A preliminary study on innovative absorption systems that utilize low-temperature geothermal energy for air-conditioning buildings.
Number: pap. 2603
Author(s) : YANG Z., LIU X., GLUESENKAMP K. R., et al.
Summary
Air conditioning (A/C) systems driven by renewable energy have been studied extensively during the past decade as promising alternatives to conventional electricity-driven vapor compression A/C to alleviate stress on the grid as well as reduce CO2 emissions. Among the possible renewable energy sources to drive A/C systems, low-temperature geothermal heat (<150°C/300°F) is currently underutilized despite its abundance in the United States and the advantage of steady output. A major barrier to wider utilization is the typically long distances between geothermal sources and potential end uses. In order to overcome this barrier, an innovative two-step geothermal absorption (TSGA) system was studied. With this system, low-temperature geothermal energy is stored and transported at ambient temperature with an energy density of 349 kJ of cooling energy per kg of shipped LiBr/H2O solution, which is about five times higher than directly transporting geothermal fluid itself for space heating. Key design parameters of a 900 ton TSGA chiller have been determined through computer simulations using SorpSim software. A case study for applying the TSGA system at a large office building in Houston, TX indicates that, for a 10-mile distance from the geothermal site to the building, the simple payback of the TSGA system is 11 years compared with a conventional electric-driven chiller. To further improve the density of the transported energy, thereby reducing transportation cost and improving payback, a new system using three-phase-sorption technology is proposed. In this system, crystallized salt solution is used to boost the transported energy density. A preliminary study of this new system shows that the increased energy density has potential to shorten the payback of the TSGA system by 50%.
Available documents
Format PDF
Pages: 10
Available
Public price
20 €
Member price*
15 €
* Best rate depending on membership category (see the detailed benefits of individual and corporate memberships).
Details
- Original title: A preliminary study on innovative absorption systems that utilize low-temperature geothermal energy for air-conditioning buildings.
- Record ID : 30018867
- Languages: English
- Source: 2016 Purdue Conferences. 16th International Refrigeration and Air-Conditioning Conference at Purdue.
- Publication date: 2016/07/11
Links
See other articles from the proceedings (274)
See the conference proceedings
-
Simulation of a double effect H20-LIBR absorpti...
- Author(s) : BORDOGNA P., FERNÁNDEZ BENÍTEZ J. A., MOLINAROLI L., et al.
- Date : 2015/08/16
- Languages : English
- Source: Proceedings of the 24th IIR International Congress of Refrigeration: Yokohama, Japan, August 16-22, 2015.
- Formats : PDF
View record
-
Solar cooling: effect of heat stress on a room ...
- Author(s) : FEDORCÁK P., MLYNÁR P., KOŠICANOVÁ D., et al.
- Date : 2013/06/16
- Languages : English
- Source: Clima 2013. 11th REHVA World Congress and 8th International Conference on Indoor Air Quality, Ventilation and Energy Conservation in Buildings.
- Formats : PDF
View record
-
Experimental evaluation of the performance of a...
- Author(s) : HERA D., GIRIP A.
- Date : 2011/08/21
- Languages : English
- Source: Proceedings of the 23rd IIR International Congress of Refrigeration: Prague, Czech Republic, August 21-26, 2011. Overarching theme: Refrigeration for Sustainable Development.
- Formats : PDF
View record
-
A performance study on a chemical energy storag...
- Author(s) : WONGSUWAN W., RUNGPIBOONSOPIT T., CHATCHAWAN C., et al.
- Date : 2004/08/01
- Languages : English
- Source: Natural Working Fluids 2004: 6th IIR-Gustav Lorentzen Conference
- Formats : PDF
View record
-
Konstruktion und Betrieb eines kleinen Eisspeic...
- Author(s) : KOLLER T., ZETZSCHE M., MÜLLER-STEINHAGEN H.
- Date : 2007/11/21
- Languages : German
- Source: DKV-Tagungsbericht 2007, Hannover.
View record