IIR document

An efficient high cooling capacity Stirling cryocooler and its application for capturing boil-off methane from liquefied natural gas.

Author(s) : SUN D., XU Y., SHEN Q.

Type of article: IJR article

Summary

Natural gas is a cost-effective energy supply for the development of low-carbon economy and environmental protection worldwide. Despite the environmentally friendly properties of natural gas, methane is a potent greenhouse gas. Therefore, efficiently recovering the boil-off methane gas (BOG) generated from liquefied natural gas (LNG) devices is becoming a pressing problem involving both the economy and the environment. The Stirling cryocooler is a promising technology in dealing with BOG. This technology has superior characteristics, including large cooling capacity, high efficiency, compact configuration, and flexible operating characteristics. In the study, a high cooling capacity Stirling cryocooler was developed. The influences of the regenerator on the cryocooler were studied. The refrigeration performance and the operating characteristics were systematically analyzed. A cooling power of 1050 W at 77 K with a relative Carnot efficiency of 33.28 % was achieved. Accordingly, the cryocooler outperforms the reported Stirling-type cryocoolers in terms of overall performance. A BOG liquefaction system based on the cryocooler was installed in an LNG refueling station. On-site test results demonstrated that the system can produce 27.3 L/h LNG with a power consumption of 14.5 kW. The present research lays a good foundation for future optimizations and applications of the cryocooler in liquefying BOG.

Available documents

Format PDF

Pages: 425-433

Available

  • Public price

    20 €

  • Member price*

    Free

* Best rate depending on membership category (see the detailed benefits of individual and corporate memberships).

Details

  • Original title: An efficient high cooling capacity Stirling cryocooler and its application for capturing boil-off methane from liquefied natural gas.
  • Record ID : 30032486
  • Languages: English
  • Subject: Technology
  • Source: International Journal of Refrigeration - Revue Internationale du Froid - vol. 165
  • Publication date: 2024/09
  • DOI: http://dx.doi.org/10.1016/j.ijrefrig.2024.06.013

Links


See other articles in this issue (39)
See the source