Summary
Pulsating heat pipe (PHP) is becoming a promising heat transfer device for the application like electronics cooling. However, due to its complicated operation mechanism, the heat transfer properties of the PHP still have not been fully understood. This study experimentally investigated on a closed-loop PHP charged with four types of working fluids, deionized water, methanol, ethanol and acetone. Combined with the visualization experimental results from the open literature, the operation characteristics and the corresponding heat transfer mechanisms for different heat inputs (5 W up to 100 W) and different filling ratios (20% up to 95%) have been presented and elaborated. The results show that heat-transfer mechanism changed with the transition of operation patterns; before valid oscillation started, the thermal resistance was not like that described in the open literature where it decreased almost linearly, but would rather slowdown descending or even change into rise first before further decreasing (i.e. an inflection point existed); when the heat input further increased to certain level, e.g. 65 W or above, there presented a limit of heat-transfer performance which was independent of the types of working fluids and the filling ratios, but may be related to the structure, the material, the size and the inclination of the PHP.
Details
- Original title: Combination study of operation characteristics and heat transfer mechanism for pulsating heat pipe.
- Record ID : 30011049
- Languages: English
- Source: Applied Thermal Engineering - vol. 65 - n. 1-2
- Publication date: 2014/04
- DOI: http://dx.doi.org/10.1016/j.applthermaleng.2014.01.030
Links
See other articles in this issue (18)
See the source
Indexing
-
Themes:
Heat transfer;
Other industrial applications - Keywords: Pulsation; Heat pipe; Heat; Electronics; Heat transfer; Cooling; Expérimentation
-
Effects of fluctuations of heating and cooling ...
- Author(s) : KIM S., ZHANG Y., CHOI J.
- Date : 2013/01
- Languages : English
- Source: Applied Thermal Engineering - vol. 50 - n. 1
View record
-
Rough surfaces with enhanced heat transfer for ...
- Author(s) : VENTOLA L., ROBOTTI F., DIALAMEH M., et al.
- Date : 2014/08
- Languages : English
- Source: International Journal of Heat and Mass Transfer - vol. 75
View record
-
Solder transfer of carbon nanotube microfin coo...
- Author(s) : MÄKLIN J., HALONEN N., PITKÄNEN O., et al.
- Date : 2014/04
- Languages : English
- Source: Applied Thermal Engineering - vol. 65 - n. 1-2
View record
-
Convective performance of nanofluids in commerc...
- Author(s) : ROBERTS N. A., WALKER D. G.
- Date : 2010/11
- Languages : English
- Source: Applied Thermal Engineering - vol. 30 - n. 16
View record
-
Experimental study with novel spray cooling sys...
- Author(s) : TIAN C. Q., SI C. Q., SHAO S. Q., et al.
- Date : 2011/08/21
- Languages : English
- Source: Proceedings of the 23rd IIR International Congress of Refrigeration: Prague, Czech Republic, August 21-26, 2011. Overarching theme: Refrigeration for Sustainable Development.
- Formats : PDF
View record