Summary
The Stirling/pulse tube cryocooler (SPC) is one of the most promising cryocoolers for space applications due to its advantages like high efficiency and long lifetime. The second pulse tube stage is coaxial pneumatically coupled in series with the first Stirling stage. The SPC possesses a distinctive capability to dynamically adjust the inter-stage refrigeration capacity by actively controlling the Stirling displacer in the first stage. This enables the SPC to effectively cater to varying heat loads over time. Nevertheless, the investigation into the regulation mechanism of the second-stage phase shifter on inter-stage refrigeration capacity shift is hindered by the presence of the second-stage passive phase shifter. This manuscript proposes an SPC with a second-stage active phase shifter (APS), which can actively control the phase difference between the pressure wave and mass flow at the second-stage hot end of the pulse tube in real time. The effect of the APS phase and amplitude on the inter-stage refrigeration capacity shift is analyzed using the theoretical and numerical model proven by the experiment. The first experimentally reported SPC with a second-stage APS demonstrates a refrigeration capacity of 0.22 W at 20 K plus 3.11 W at 70 K, requiring a compressor electrical power of 220 W. The SPC achieves a no-load minimum temperature of 13.5 K.
Available documents
Format PDF
Pages: 43-52
Available
Public price
20 €
Member price*
Free
* Best rate depending on membership category (see the detailed benefits of individual and corporate memberships).
Details
- Original title: Effects of second-stage active phase shifter on the inter-stage refrigeration capacity of a Stirling/pulse tube cryocooler.
- Record ID : 30032086
- Languages: English
- Subject: Technology
- Source: International Journal of Refrigeration - Revue Internationale du Froid - vol. 157
- Publication date: 2024/01
- DOI: http://dx.doi.org/10.1016/j.ijrefrig.2023.10.013
Links
See other articles in this issue (17)
See the source
-
Frequency response characteristics of a thermal...
- Author(s) : WEN F., LIU S., WU W., SONG J., LI N., JIANG Z., WU Y.
- Date : 2023/01
- Languages : English
- Source: International Journal of Refrigeration - Revue Internationale du Froid - vol. 145
- Formats : PDF
View record
-
Recent advances in single- and multi-stage Stir...
- Author(s) : DANG H., TAN J., ZHA R., et al.
- Date : 2019/08/24
- Languages : English
- Source: Proceedings of the 25th IIR International Congress of Refrigeration: Montréal , Canada, August 24-30, 2019.
- Formats : PDF
View record
-
Investigations on the coupling principle of the...
- Author(s) : ZHAO Y., TAN J., ZHAO B., TAN H., XUE R., WU S., ZHAI Y., WU D., MA D., DANG H.
- Date : 2023/05
- Languages : English
- Source: International Journal of Refrigeration - Revue Internationale du Froid - vol. 149
- Formats : PDF
View record
-
CFD analysis of thermodynamic cycles in a pulse...
- Author(s) : CHEN L., ZHANG Y., LUO E., et al.
- Date : 2010/11
- Languages : English
- Source: Cryogenics - vol. 50 - n. 11-12
View record
-
Dynamic and thermodynamic characteristics of th...
- Author(s) : DANG H., ZHANG L., TAN J.
- Date : 2016/09
- Languages : English
- Source: International Journal of Refrigeration - Revue Internationale du Froid - vol. 69
- Formats : PDF
View record