IIR document

Generating the optimal magnetic field for magnetic refrigeration.

Number: pap. 110

Author(s) : BJØRK R., INSINGA A. R., SMITH A., et al.

Summary

In a magnetic refrigeration device the magnet is the single most expensive component, and therefore it is crucially important to ensure that an effective magnetic field as possible is generated using the least amount of permanent magnets. Here we present a method for calculating the optimal remanence distribution for any desired magnetic field. The method is based on the reciprocity theorem, which through the use of virtual magnets can be used to calculate the optimal remanence distribution. Furthermore, we present a method for segmenting a given magnet design that always results in the optimal segmentation, for any number of segments specified. These two methods are used to determine the optimal magnet design of a 12-piece, two-pole concentric cylindrical magnet for use in a continuously rotating magnetic refrigeration device.

Available documents

Format PDF

Pages: 4 p.

Available

  • Public price

    20 €

  • Member price*

    Free

* Best rate depending on membership category (see the detailed benefits of individual and corporate memberships).

Details

  • Original title: Generating the optimal magnetic field for magnetic refrigeration.
  • Record ID : 30019387
  • Languages: English
  • Source: 7th International Conference on Magnetic Refrigeration at Room Temperature (Thermag VII). Proceedings: Turin, Italy, September 11-14, 2016.
  • Publication date: 2016/09/11
  • DOI: http://dx.doi.org/10.18462/iir.thermag.2016.0110

Links


See other articles from the proceedings (71)
See the conference proceedings