Hourly thermal load prediction for the next 24 hours by autoregressive integrated moving average (ARIMA), exponential weighted moving average (EWWA), recursive linear regressive (LR), and an artificial neural network.
Author(s) : KAWASHIMA M., DORGAN C. E., MITCHELL J. W.
Summary
Predicting the thermal load for the next 24 hours is essential for optimal control of HVAC systems that use thermal cool storage. It can be useful in minimizing costs and energy in nonstorage systems. A cooperative research project between a US university and a Japanese corporation investigated four generally used prediction methods to examine the basic models with variations and to compare the accuracy of each model. The results indicate that an artificial neural network model produces the most accurate thermal load predictions.
Details
- Original title: Hourly thermal load prediction for the next 24 hours by autoregressive integrated moving average (ARIMA), exponential weighted moving average (EWWA), recursive linear regressive (LR), and an artificial neural network.
- Record ID : 1996-1720
- Languages: English
- Source: ASHRAE Transactions.
- Publication date: 1995/01
- Document available for consultation in the library of the IIR headquarters only.
Links
See other articles from the proceedings (70)
See the conference proceedings
Indexing
- Themes: Air conditioning: general information
- Keywords: Heat balance; Design; Artificial neural network; Accuracy; Simulation; Prediction; Air conditioning
-
An innovative air-conditioning load forecasting...
- Author(s) : YAO Y., LIAN Z., HOU Z., et al.
- Date : 2006/06
- Languages : English
- Source: International Journal of Refrigeration - Revue Internationale du Froid - vol. 29 - n. 4
- Formats : PDF
View record
-
Prediction of thermal comfort index predicted m...
- Author(s) : LIU S. B., CAO Q., FU M. X., WANG Y. Y.
- Date : 1997/09/09
- Languages : English
- Source: International Symposium on Air Conditioning in High Rise Buildings - 1997
- Formats : PDF
View record
-
Viscosity prediction for six pure refrigerants ...
- Author(s) : ZHI L. H., HU P., CHEN L. X., et al.
- Date : 2018/04
- Languages : English
- Source: International Journal of Refrigeration - Revue Internationale du Froid - vol. 88
- Formats : PDF
View record
-
Nonlinear HVAC computations using neural networks.
- Author(s) : MISTRY S. I., NAIR S. S.
- Date : 1993
- Languages : English
- Source: ASHRAE Transactions 1993.
View record
-
A neural-network-based identifier/controller fo...
- Author(s) : SO A. T. P., CHAN W. L., CHOW T. T., TSE W. L.
- Date : 1995/06/24
- Languages : English
- Source: ASHRAE Transactions.
View record