Impact of mechanical ventilation and indoor air recirculation rates on the performance of an active membrane energy exchanger system.
Number: 210020
Author(s) : FIX A., BRAUN J., WARSINGER D.
Summary
As concern for indoor air quality grows, many buildings will likely opt to provide higher rates of outdoor air than would traditionally be specified. This imposes a challenge on air conditioning systems since the latent loads associated with ventilation air are much higher than those associated with recirculated air. Membrane-based technologies, which enable mechanical separation of water vapor from air, have recently emerged as promising candidates for efficiently providing dehumidification, however, limitations remain. To date, most modeling work on these types of systems has focused on 100% outdoor air configurations that employ isothermal dehumidification designs. However, we have proposed a design referred to as the Active Membrane Energy Exchanger (AMX) that integrates cooling and membrane dehumidification into one device (thus non-isothermal) for a range of benefits. This work presents a specific application of the AMX in a system configuration that includes the treatment of both outdoor ventilation air and recirculated air. The system’s performance is analyzed over a broad range of ambient conditions and the effect of ventilation rates on the system performance is studied in detail. This configuration is found to be capable of providing three times the ventilation air of conventional systems with comparable or less energy consumption for the given conditions. Additionally, the optimal membrane module-outlet air temperature is found to be 18-20 ℃. Lastly, a case study using EnergyPlus building simulations shows that this configuration can reduce annual cooling energy requirements by as much as 34% in hot and humid cities for buildings with high latent loads and high ventilation rates.
Available documents
Format PDF
Pages: 11
Available
Public price
20 €
Member price*
15 €
* Best rate depending on membership category (see the detailed benefits of individual and corporate memberships).
Details
- Original title: Impact of mechanical ventilation and indoor air recirculation rates on the performance of an active membrane energy exchanger system.
- Record ID : 30028597
- Languages: English
- Subject: Technology
- Source: 2021 Purdue Conferences. 18th International Refrigeration and Air-Conditioning Conference at Purdue.
- Publication date: 2021/05
- Document available for consultation in the library of the IIR headquarters only.
Links
See other articles from the proceedings (184)
See the conference proceedings
Indexing
-
Theoretical study on performance of cyclic memb...
- Author(s) : KU D., BAE S., KIM S., JUNG M., LEE J., KIM T., KIM M.
- Date : 2023/08/21
- Languages : English
- Source: Proceedings of the 26th IIR International Congress of Refrigeration: Paris , France, August 21-25, 2023.
- Formats : PDF
View record
-
Theoretical Analysis of Mass Transfer in a Vacu...
- Author(s) : CHO H. J., CHEON S.-Y., LIU S., JEONG J. W.
- Date : 2021/08/31
- Languages : English
- Source: 13th IEA Heat Pump Conference 2021: Heat Pumps – Mission for the Green World. Conference proceedings [full papers]
- Formats : PDF
View record
-
Comparison on Vacuum Membrane Dehumidification ...
- Author(s) : LIM H., LEE J., CHOI S., KIM S., JUNG M., LIM J., KIM M.
- Date : 2021/08/31
- Languages : English
- Source: 13th IEA Heat Pump Conference 2021: Heat Pumps – Mission for the Green World. Conference proceedings [full papers]
- Formats : PDF
View record
-
A performance analysis of the Claridge-Culp-Liu...
- Author(s) : CLARIDGE D. E., CULP C. H., PATE M., HABERL J., BYNUM J., TANSKYI O., SCHAFF F.
- Date : 2021/02
- Languages : English
- Source: International Journal of Refrigeration - Revue Internationale du Froid - vol. 122
- Formats : PDF
View record
-
Numerical simulation of a flat-sheet membrane-b...
- Author(s) : LI C. H., HO H. Y., YANG T. F., AMANI M., YAN W. M.
- Date : 2023/01
- Languages : English
- Source: International Journal of Refrigeration - Revue Internationale du Froid - vol. 145
- Formats : PDF
View record