Integrating Li-Fi wireless communication and energy harvesting wireless sensor for next generation building management.
Number: pap. 3370
Author(s) : HUANG Q., LI X., SHAURETTE M.
Summary
Wireless sensors have been increasingly utilized in the design of next generation high performance buildings. When deploying wireless sensors, energy supply and data communication are the major concerns. Although energy harvest wireless sensors could automatically feed themselves by harvesting ambient energy, the presence of reliable energy sources to support dependable wireless transmission is a great challenge. The emerging Li-Fi technology is promising to fundamentally solve this problem. Li-Fi stands for Light-Fidelity, which is a new kind of wireless communication systems using light as a medium instead of traditional radio-frequency electromagnetic radiation. Li-Fi technology provides harvested energy to power wireless sensors with a unique advantage of power generation from the lighting system being controlled. The combination of Li-Fi and energy harvesting wireless sensor technologies could enable attractive features and bring in great benefits in the design of next generation high performance buildings because: (i) energy harvest sensors do not face the short-of-energy problem; (ii) Li-Fi enables much higher transmission speed compared to the existing RF electromagnetic technologies, thus, energy harvest sensors could easily deliver environmental parameters quickly for control purposes; (iii) energy harvest sensors could assist the building management team to understand the coverage area of the lighting system; (iv) the communication of sensor aggregated information can be naturally encrypted due to the combination of both technologies.
Available documents
Format PDF
Pages: 6 p.
Available
Public price
20 €
Member price*
15 €
* Best rate depending on membership category (see the detailed benefits of individual and corporate memberships).
Details
- Original title: Integrating Li-Fi wireless communication and energy harvesting wireless sensor for next generation building management.
- Record ID : 30013586
- Languages: English
- Subject: Technology, Environment
- Source: 2014 Purdue Conferences. 3rd International High Performance Buildings Conference at Purdue.
- Publication date: 2014/07/14
Links
See other articles from the proceedings (66)
See the conference proceedings
Indexing
-
Themes:
Refrigeration related domains;
Green buildings - Keywords: Technology; Sensor; Energy; Building; Management; Harvesting; Performance; Control (generic)
-
A novel human machine interface for advanced bu...
- Author(s) : QUIMBY P. W., KHIRE R., LEONARDI F., et al.
- Date : 2014/07/14
- Languages : English
- Source: 2014 Purdue Conferences. 3rd International High Performance Buildings Conference at Purdue.
- Formats : PDF
View record
-
Low energy houses heated by biomass boilers: op...
- Author(s) : CARLON E., SCHWARZ M., SCHMIDL C., et al.
- Date : 2014/07/14
- Languages : English
- Source: 2014 Purdue Conferences. 3rd International High Performance Buildings Conference at Purdue.
- Formats : PDF
View record
-
Impact of solar estimation on MPC performance o...
- Author(s) : KIM D., WITMER L., BROWNSON J. R. S., et al.
- Date : 2014/07/14
- Languages : English
- Source: 2014 Purdue Conferences. 3rd International High Performance Buildings Conference at Purdue.
- Formats : PDF
View record
-
Optimal chiller and thermal energy storage desi...
- Author(s) : MENDOZA SERRANO D. I., CHMIELEWSKI D. J.
- Date : 2014/07/14
- Languages : English
- Source: 2014 Purdue Conferences. 3rd International High Performance Buildings Conference at Purdue.
- Formats : PDF
View record
-
Load and electricity rates prediction for build...
- Author(s) : ELBSAT M. N., WENZEL M. J.
- Date : 2016/07/11
- Languages : English
- Source: 2016 Purdue Conferences. 4th International High Performance Buildings Conference at Purdue.
- Formats : PDF
View record