IIR document

Investigation of refrigeration efficiency for fully wet circular porous fins with variable sections by combined heat and mass transfer analysis.

Author(s) : HATAMI M., GANJI D. D.

Type of article: Article, IJR article

Summary

Temperature distribution equation and refrigeration efficiency for fully wet circular porous fins with variable sections are introduced in this study by a new modified wet fin parameter presented by Sharqawy and Zubair. This parameter can be calculated without knowing the fin tip condition by considering the temperature and humidity ratio differences for the driving forces of heat and mass transfer, respectively. It's assumed that heat and mass convective coefficients vary with fin temperature and heat transfer through porous media is simulated using passage velocity from the Darcy's model. After presenting the governing equation, Least Square Method (LSM) and fourth order Runge-Kutta method (NUM) are applied for predicting the temperature distribution in the sample aluminum porous fins. After that, effects of porosity, Darcy number, Rayleigh number, Lewis number and etc. on fin efficiency are examined. As a main outcome, for reaching to high values of fin efficiency, rectangular fin should be used instead of convex and triangular sections.

Available documents

Format PDF

Pages: 140-151

Available

  • Public price

    20 €

  • Member price*

    Free

* Best rate depending on membership category (see the detailed benefits of individual and corporate memberships).

Details

  • Original title: Investigation of refrigeration efficiency for fully wet circular porous fins with variable sections by combined heat and mass transfer analysis.
  • Record ID : 30010737
  • Languages: English
  • Source: International Journal of Refrigeration - Revue Internationale du Froid - vol. 40
  • Publication date: 2014/04

Links


See other articles in this issue (41)
See the source