Investigation on a novel adiabatic absorber.
Number: pap. 2543
Author(s) : OKAMOTO H., DANG C., HIHARA E.
Summary
Hot water supplies account for approximately 30% of energy consumption in residential sectors of Japan; it is therefore important that the energy efficiency of water heaters be improved. Absorption heat pump water heaters are expected to provide greater efficiency than conventional water heaters that use gas. However, the absorption systems have larger volumes and are not widely accepted in the market. In this paper, we propose the use of adiabatic absorbers to replace conventional shell-and-tube or plate-fin-type absorbers to downsize absorption heat pump water heaters that use H2O/NH3. The adiabatic absorption system consists of two components: sub-cooler and adiabatic absorber. For the proposed absorption system, the solution from the generator first flows through the sub-cooler and is sub-cooled by tap water, and then flows into the adiabatic absorber to complete absorption. The absorption performance, as well as the volume of the adiabatic absorber, is important in order to obtain greater efficiency. In this study, three types of absorbers are proposed: atomizing nozzle, spreading tray, and packed-column absorbers. These three types of absorption system are modeled and their absorption performances are analyzed. In modeling the atomizing-nozzle-type absorber, the breakup position of liquid film and the diameter of generated droplets are discussed on the basis of the instability theory of liquid film. In analytically modeling the spreadingtray- type absorber, the breakup length of the liquid column and generated droplet diameter are discussed. In the case of the packed-column-type absorber, the effective interfacial area of dumped packing is discussed. From the calculation results, design guidelines are developed and the expected sizes are compared.
Available documents
Format PDF
Pages: 10 p.
Available
Public price
20 €
Member price*
15 €
* Best rate depending on membership category (see the detailed benefits of individual and corporate memberships).
Details
- Original title: Investigation on a novel adiabatic absorber.
- Record ID : 30006456
- Languages: English
- Source: 2012 Purdue Conferences. 14th International Refrigeration and Air-Conditioning Conference at Purdue.
- Publication date: 2012/07/16
Links
See other articles from the proceedings (195)
See the conference proceedings
Indexing
-
Themes:
Heat pumps techniques;
Absorption and adsorption systems - Keywords: Water heater; Spray; Absorption; Heat pump; Performance; Model; Absorber
-
Investigation of atomizing-spray adiabatic abso...
- Author(s) : OKAMOTO H., DANG C., HIHARA E.
- Date : 2014/03/02
- Languages : English
- Source: International sorption heat pump conference (ISHPC2014), College Park, United States, March 31-April 2, 2014.
- Formats : PDF
View record
-
Hybrid coabsorbent heat pumping cycles.
- Author(s) : STAICOVICI M. D. N., STAICOVICI A. M. M. D.
- Date : 2013/05/09
- Languages : English
- Source: 5th Conference on Ammonia Refrigeration Technology. Proceedings: Ohrid, North Macedonia, May 9-11, 2013.
- Formats : PDF
View record
-
Drop formation of swirl-jet nozzles with high v...
- Author(s) : WARNAKULASURIYA F. S. K., WOREK W. M.
- Date : 2008/07
- Languages : English
- Source: International Journal of Heat and Mass Transfer - vol. 51 - n. 13-14
View record
-
Modelling and experimental analysis of a GAX NH...
- Author(s) : APRILE M., SCOCCIA R., TOPPI T., et al.
- Date : 2016/06
- Languages : English
- Source: International Journal of Refrigeration - Revue Internationale du Froid - vol. 66
- Formats : PDF
View record
-
Steady-state parametric study of semi-open abso...
- Author(s) : KUMAR N., GLUESENKAMP K. R., YANG Z., ABU-HEIBA A., PATEL V. K., BHAGWAT R., SANADHYA S., RODE R., SCHMID M., MOGHADDAM S.
- Date : 2021/05
- Languages : English
- Source: 2021 Purdue Conferences. 18th International Refrigeration and Air-Conditioning Conference at Purdue.
- Formats : PDF
View record