Summary
Due to the disadvantages of conventional working pairs (NH3/H2O and H2O/LiBr) in the absorption-refrigeration cycles, 2,3,3,3-Tetrafluoroprop-1-ene(R1234yf)/ionic liquid (IL), which possessed of remarkable properties, has received more and more attention. In this work, the thermodynamic performance of single-effect and compression-assisted absorption refrigeration cycles were analyzed using R1234yf as refrigerant and ILs (including [emim][BF4], [hmim][BF4], [omim][BF4], [hmim][Tf2N], [hmim][PF6] and [hmim][TfO]) as absorbent, the thermodynamic properties of working pairs was estimated by the NRTL model. The effects of generation, evaporation, condensation and absorption temperature as well as compression ratio on the cooling performance and circulation ratio were studied in various working conditions. Compared to the single-effect cycle, the compression-assisted cycle effectively improves the cooling performance, reduces the circulation ratio and extends the operation range of generation, evaporation and absorption temperatures. At the same working condition, [hmim][Tf2N] performs the best while [emim][BF4] has the lowest COP, the cooling performance of [hmim][BF4], [omim][BF4], [hmim][TfO] and [hmim][PF6] is similar.
Available documents
Format PDF
Pages: 25-36
Available
Public price
20 €
Member price*
Free
* Best rate depending on membership category (see the detailed benefits of individual and corporate memberships).
Details
- Original title: Performance analysis of R1234yf/ionic liquid working fluids for single-effect and compression-assisted absorption refrigeration systems.
- Record ID : 30027171
- Languages: English
- Source: International Journal of Refrigeration - Revue Internationale du Froid - vol. 109
- Publication date: 2020/01
- DOI: http://dx.doi.org/10.1016/j.ijrefrig.2019.10.007
Links
See other articles in this issue (20)
See the source
Indexing
- Themes: Absorption and adsorption systems
- Keywords: R1234yf; Ionic liquid; Absorption system; Thermodynamic property; Modelling; Compression
-
New environment friendly working pairs of dimet...
- Author(s) : LIU X., LI J., WANG S., HE M.
- Date : 2022/02
- Languages : English
- Source: International Journal of Refrigeration - Revue Internationale du Froid - vol. 134
- Formats : PDF
View record
-
Analysis of hybrid compression absorption refri...
- Author(s) : ASENSIO-DELGADO J. M., ASENSIO-DELGADO S., ZARCA G., URTIAGA A.
- Date : 2022/02
- Languages : English
- Source: International Journal of Refrigeration - Revue Internationale du Froid - vol. 134
- Formats : PDF
View record
-
Experimental investigation on the phase behavio...
- Author(s) : JIA X., LUO Y., XIAO D., WANG X.
- Date : 2022/03
- Languages : English
- Source: International Journal of Refrigeration - Revue Internationale du Froid - vol. 135
- Formats : PDF
View record
-
Influence of the mass diffusivity versus solubi...
- Author(s) : ALTAMIRANO A., RIVES R., AYOU D. S., CORONAS A.
- Date : 2023/08/21
- Languages : English
- Source: Proceedings of the 26th IIR International Congress of Refrigeration: Paris , France, August 21-25, 2023.
- Formats : PDF
View record
-
Excess enthalpy prediction for ionic liquid bas...
- Author(s) : WANG M., INFANTE FERREIRA C.
- Date : 2017/04/23
- Languages : English
- Source: 5th IIR Conference on Thermophysical Properties and Transfer Processes of Refrigerants.
- Formats : PDF
View record