IIR document

New environment friendly working pairs of dimethyl ether and ionic liquids for absorption refrigeration with high COP.

Author(s) : LIU X., LI J., WANG S., HE M.

Type of article: IJR article

Summary

To overcome the limitations of absorption refrigeration system brought by commercial working pairs of NH3/H2O and H2O/LiBr for the utilization of low-grade heat, a new class of working pairs consisting of dimethyl ether (DME) and ionic liquids (ILs) are developed. The solubilities of DME in three ILs [BMIM][BF4], [BMIM][PF6] and [BMIM][Tf2N] were firstly measured and correlated. Then, COPs of the single-effect absorption refrigeration system (ARS) and absorption-compression hybrid refrigeration system (ACRS) using DME/IL were calculated under different conditions. The maximum COP of ARS using the three DME/IL working pairs can be up to 32.0% larger than that using NH3/H2O, while the maximum COP of ACRS using the three DME/IL working pairs can be up to 38.3% larger than that using NH3/H2O under studied conditions. The three DME/IL working pairs also show much better cooling performance than HFC/IL and HFO/IL working pairs which are R152a/[HMIM][Tf2N] and R1234ze(E)/[HMIM][Tf2N]. In ACRS, DME/ILs can drop the optimal generation temperature in ARS by more than 10 K. DME/ILs are very promising alternative absorption refrigeration working pairs due to the high COP, wide applicability and environmental friendliness.

Available documents

Format PDF

Pages: 159-167

Available

  • Public price

    20 €

  • Member price*

    Free

* Best rate depending on membership category (see the detailed benefits of individual and corporate memberships).

Details

  • Original title: New environment friendly working pairs of dimethyl ether and ionic liquids for absorption refrigeration with high COP.
  • Record ID : 30029343
  • Languages: English
  • Subject: Technology
  • Source: International Journal of Refrigeration - Revue Internationale du Froid - vol. 134
  • Publication date: 2022/02
  • DOI: http://dx.doi.org/10.1016/j.ijrefrig.2021.11.031
  • Document available for consultation in the library of the IIR headquarters only.

Links


See other articles in this issue (29)
See the source