IIR document

Study of the energy conversion chain in a thermomagnetic generator.

Number: pap. 0032

Author(s) : AHMIM S., ALMANZA M., PASKO A., et al.

Summary

Thermomagnetic generators designed to scavenge electrical energy from a heat flow can be designed following different conversion chains. Here we numerically study a device based on a three steps conversion, from magnetic towards kinetic, and eventually electrical energy. This chain is assured by a magnetocaloric material (MCM) as active substance moving between the heat reservoirs on an elastic beam (polypropylene :60.6 x 26.6 x 1.2 mm3) designed to obtain an auto-oscillating system. The cantilever kinetic energy is recovered using piezoelectric patches (PZT 5a). After optimization of the patches size, our simulations give an output energy density of 0.03 mJcm-3. To achieve a further optimization we investigate the possibility to use the piezoelectric material both as a transducer and as an actuator to have a better control of the working thermodynamic cycle. In this way we show that an energy density up to 60.46 mJcm-3 can be achieved.

Available documents

Format PDF

Pages: 5

Available

  • Public price

    20 €

  • Member price*

    Free

* Best rate depending on membership category (see the detailed benefits of individual and corporate memberships).

Details

  • Original title: Study of the energy conversion chain in a thermomagnetic generator.
  • Record ID : 30025035
  • Languages: English
  • Source: 8th International Conference on Caloric Cooling (Thermag VIII). Proceedings: Darmstadt, Germany, September 16-20, 2018.
  • Publication date: 2018/09/16
  • DOI: http://dx.doi.org/10.18462/iir.thermag.2018.0032

Links


See other articles from the proceedings (43)
See the conference proceedings