The great energy predictor shootout. 2. Measuring retrofit savings.
Author(s) : HABERL J. S., THAMILSERAN S.
Type of article: Article
Summary
Results from the contest show that neural networks again provide the more accurate model of a building's energy use. However, in contrast to the first contest (see also reference 95-1050) the second contest's results show that cleverly assembled statistical models also appear to be as accurate, and more accurate in some cases, than some of the neural network entries.
Details
- Original title: The great energy predictor shootout. 2. Measuring retrofit savings.
- Record ID : 1999-0403
- Languages: English
- Subject: Environment
- Source: ASHRAE Journal - vol. 40 - n. 1
- Publication date: 1998/01
- Document available for consultation in the library of the IIR headquarters only.
Links
See other articles in this issue (5)
See the source
-
How to reduce the energy demand for the cooling...
- Author(s) : PAUL J.
- Date : 2007/08/21
- Languages : English
- Source: ICR 2007. Refrigeration Creates the Future. Proceedings of the 22nd IIR International Congress of Refrigeration.
- Formats : PDF
View record
-
Inverse Modelling Toolkit (IMT): numerical algo...
- Author(s) : KISSOCK J. K., HABERL J. S., CLARIDGE D. E.
- Date : 2003
- Languages : English
- Source: ASHRAE Transactions. 2003 annual Meeting, Kansas City, Missouri, USA. Volume 109, part 2 + CD-ROM.
View record
-
Analytische Verifikationsmethode von Gebäudesim...
- Author(s) : NEYMARK J., JUDKOFF R., KNABE G., et al.
- Date : 2003/05
- Languages : German
- Source: KI Luft Kältetech. - vol. 39 - n. 5
View record
-
Expert system to determine energy-saving retrof...
- Author(s) : GATTON T. M., JAEGER S., LEE Y., BEAUDRY M. A.
- Date : 1995/06/24
- Languages : English
- Source: ASHRAE Transactions.
View record
-
Energy use during the life cycle of buildings: ...
- Author(s) : ADALBERTH K.
- Date : 1997/07
- Languages : English
- Source: Build. Environ. - vol. 32 - n. 4
View record