Thermal systems oriented two-phase heat exchanger models. Focus on numerical robustness.
Number: 2361
Author(s) : ABLANQUE N., TORRAS S., OLIET C., RIGOLA J.
Summary
The simulation of complex refrigeration architectures (that usually include vapor compression cycles) provides useful information for design, study and optimization purposes. Such arrangements may include several interconnected systems and a large variety and quantity of components. All components must meet two crucial requirements, namely, low CPU resolution time and high numerical robustness, in order to achieve relatively fast simulations and to prevent solver resolution issues at the architecture level. Among the usual components present, heat exchangers are the most challenging to address considering both the phenomenological and the numerical point of views. A generic heat exchanger model oriented for flexible purposes and meeting the aforementioned requirements has been developed under the Modelica programming language. The model can handle both single-phase and two-phase flows based on a simplified approach that considers three different zones for the refrigerant phase. Its numerical robustness has been extensively tested focusing on different boundary characteristics (definition, values, and signal types) and on demanding operating conditions (null mass flow rate, reversed flow, and reversed heat direction). This document presents the main characteristics of the model and a complete assessment of its numerical behaviour in terms of robustness and CPU time consumption.
Available documents
Format PDF
Pages: 10 p.
Available
Free
Details
- Original title: Thermal systems oriented two-phase heat exchanger models. Focus on numerical robustness.
- Record ID : 30030694
- Languages: English
- Subject: Technology
- Source: 2022 Purdue Conferences. 19th International Refrigeration and Air-Conditioning Conference at Purdue.
- Publication date: 2022
Links
See other articles from the proceedings (224)
See the conference proceedings
Indexing
-
Modélisation d’un écoulement diphasique évapora...
- Author(s) : RAOULT F.
- Date : 2019/01/31
- Languages : French
- Formats : PDF
View record
-
Flow characteristics of air-water two phase flo...
- Author(s) : MAHMUD M. S., KAWAZOE A., MUSTAGHFIRIN M. A., et al.
- Date : 2015/08/16
- Languages : English
- Source: Proceedings of the 24th IIR International Congress of Refrigeration: Yokohama, Japan, August 16-22, 2015.
- Formats : PDF
View record
-
Design considerations for the sizing of high-ef...
- Author(s) : PACIO J., DORAO C.
- Date : 2011/08/21
- Languages : English
- Source: Proceedings of the 23rd IIR International Congress of Refrigeration: Prague, Czech Republic, August 21-26, 2011. Overarching theme: Refrigeration for Sustainable Development.
- Formats : PDF
View record
-
Modeling of two-phase refrigerant distribution ...
- Author(s) : LI W., HRNJAK P.
- Date : 2022/04
- Languages : English
- Source: International Journal of Refrigeration - Revue Internationale du Froid - vol. 136
- Formats : PDF
View record
-
Two-phase refrigerant distribution improvement ...
- Author(s) : SUN Y., CUI Z., HUANG D., ZHAO R., ZHAO Y.
- Date : 2024/02
- Languages : English
- Source: International Journal of Refrigeration - Revue Internationale du Froid - vol. 158
- Formats : PDF
View record