Document IIF

Application d'imagerie hyperspectrale Vis-NIR pour la classification entre des muscles longissimus dorsi de porc frais et congelés puis décongelés.

Application of Vis–NIR hyperspectral imaging in classification between fresh and frozen-thawed pork Longissimus Dorsi muscles.

Auteurs : MA J., PU H., SUN D. W., et al.

Type d'article : Article, Article de la RIF

Résumé

Fresh and frozen-thawed (F-T) pork meats were classified by Vis–NIR hyperspectral imaging. Eight optimal wavelengths (624, 673, 460, 588, 583, 448, 552 and 609 nm) were selected by successive projections algorithm (SPA). The first three principal components (PCs) obtained by principal component analysis (PCA) accounted for over 99.98% of variance. Gray-level-gradient co-occurrence matrix (GLGCM) was applied to extract 45 textural features from the PC images. The correct classification rate (CCR) was employed to evaluate the performance of the partial least squares-discriminate analysis (PLS-DA) models, by using (A) the reflected spectra at full wavelengths and (B) those at the optimal wavelengths, (C) the extracted textures based on the PC images, and (D) the fused variables combining spectra at the optimal wavelengths and textures. The results showed that the best CCR of 97.73% was achieved by applying (D), confirming the high potential of textures for fresh and F-T meat discrimination.

Documents disponibles

Format PDF

Pages : 10-18

Disponible

  • Prix public

    20 €

  • Prix membre*

    Gratuit

* meilleur tarif applicable selon le type d'adhésion (voir le détail des avantages des adhésions individuelles et collectives)

Détails

  • Titre original : Application of Vis–NIR hyperspectral imaging in classification between fresh and frozen-thawed pork Longissimus Dorsi muscles.
  • Identifiant de la fiche : 30013096
  • Langues : Anglais
  • Source : International Journal of Refrigeration - Revue Internationale du Froid - vol. 50
  • Date d'édition : 02/2015

Liens


Voir d'autres articles du même numéro (20)
Voir la source