IIR document
A neural network for predicting saturated liquid density using genetic algorithm for pure and mixed refrigerants.
Author(s) : MOHEBBI A., TAHERI M., SOLTANI A.
Type of article: Article, IJR article
Summary
In this study, a new approach for the auto-design of a neural network based on genetic algorithm (GA) has been used to predict saturated liquid density for 19 pure and 6 mixed refrigerants. The experimental data including Pitzer's acentric factor, reduced temperature and reduced saturated liquid density have been used to create a GA-ANN model. The results from the model are compared with the experimental data, Hankinson and Thomson and Riedel methods, and Spencer and Danner modification of Rackett methods. GA-ANN model is the best for the prediction of liquid density with an average of absolute percent deviation of 1.46 and 3.53 for 14 pure and 6 mixed refrigerants, respectively.
Available documents
Format PDF
Pages: 1317-1327
Available
Public price
20 €
Member price*
Free
* Best rate depending on membership category (see the detailed benefits of individual and corporate memberships).
Details
- Original title: A neural network for predicting saturated liquid density using genetic algorithm for pure and mixed refrigerants.
- Record ID : 2009-0065
- Languages: English
- Source: International Journal of Refrigeration - Revue Internationale du Froid - vol. 31 - n. 8
- Publication date: 2008/12
Links
See other articles in this issue (15)
See the source
Indexing
-
Liquid density prediction of five different cla...
- Author(s) : MOOSAVI M., SEDGHAMIZ E, ABARESHI M.
- Date : 2014/12
- Languages : English
- Source: International Journal of Refrigeration - Revue Internationale du Froid - vol. 48
- Formats : PDF
View record
-
Viscosity prediction for six pure refrigerants ...
- Author(s) : ZHI L. H., HU P., CHEN L. X., et al.
- Date : 2018/04
- Languages : English
- Source: International Journal of Refrigeration - Revue Internationale du Froid - vol. 88
- Formats : PDF
View record
-
Formulation based on artificial neural network ...
- Author(s) : SÖZEN A., ARCAKLIOGLU E., ÖZALP M.
- Date : 2005/08
- Languages : English
- Source: Applied Thermal Engineering - vol. 25 - n. 11-12
View record
-
Modeling of thermodynamic properties of refrige...
- Author(s) : MOHEBBI A., TAHERI M., NOOSHIRAVANI A.
- Date : 2011
- Languages : English
View record
-
Assessment of existing dimensionless correlatio...
- Author(s) : SHAO L. L., WANG J. C., JIN X. C., et al.
- Date : 2013/01
- Languages : English
- Source: International Journal of Refrigeration - Revue Internationale du Froid - vol. 36 - n. 1
- Formats : PDF
View record