Summary
A new method is presented to defrost evaporator coils of heat pumps using air as a heat source. At low outdoor temperatures the evaporation temperature can drop below the freezing point of water, the water vapor in the air then freezes on the outer surface of the coil. This increases air side pressure drop and reduces the heat transfer capability of the evaporator coil, leading to a decrease in system efficiency. Long frost build-up times would lead to a partly or totally blocked evaporator coil, rendering the system inoperable. To maintain the functionality of the system it is therefore necessary to remove the frost regularly. For a reversible air conditioning system this is typically done by reversing the flow of the system. In the reversed mode the outdoor coil serves as a condenser, hereby melting the frost on the coil surface. Each of these defrost cycles however further reduces the system efficiency substantially. The new method uses an actively distributing valve which is able to feed parallel evaporator passes individually. With this valve single evaporator circuits are regularly shut off. While no refrigerant is evaporated in a closed circuit, the coil surface temperature increases and the flow of the ambient air is sufficient to defrost this part of the evaporator as long as the air temperature is above 0°C. Experimental results show that under standard frost conditions the evaporator can be kept frost-free and even under severe conditions most of the highly inefficient system reversals can be avoided. Thereby system efficiency is increased significantly. [Reprinted with permission from Elsevier. Copyright, 2012].
Details
- Original title: A new method of defrosting evaporator coils.
- Record ID : 30003868
- Languages: English
- Source: Applied Thermal Engineering - vol. 39
- Publication date: 2012/06
- DOI: http://dx.doi.org/10.1016/j.applthermaleng.2012.01.033
Links
See other articles in this issue (9)
See the source
-
Comparison of energy supplies and consumptions ...
- Author(s) : XIONG T., YING Y., HAN B., YAN G., YU J.
- Date : 2021/12
- Languages : English
- Source: International Journal of Refrigeration - Revue Internationale du Froid - vol. 132
- Formats : PDF
View record
-
Experimental analysis of a novel gas-engine-dri...
- Author(s) : JIA L-L, ZHANG R., ZHANG X., MA Z.-X., LIU F. G.
- Date : 2020/10
- Languages : English
- Source: International Journal of Refrigeration - Revue Internationale du Froid - vol. 118
- Formats : PDF
View record
-
Development trend analysis of heat pump technol...
- Author(s) : YANG L., XU W., ZHU Q., et al.
- Date : 2012/08
- Languages : Chinese
- Source: HV & AC - vol. 42 - n. 267
- Formats : PDF
View record
-
Flooded evaporator in small refrigeration and h...
- Author(s) : ERICSSON S.
- Date : 2011/06/10
- Languages : English
- Source: Green new deal - green economy. The latest technology in refrigeration and air conditioning: energy issues and climate change, new refrigerants, new European regulations, new plants. XIV European Conference: June 10-11, 2011, Milan.
- Formats : PDF
View record
-
OPERATION OF REFRIGERATING SYSTEMS WITH AIR-COO...
- Author(s) : SOUKUP L.
- Date : 1985
- Languages : Czech
- Source: Prum. Potravin - vol. 36 - n. 11
View record