Summary
Operational instability, or hunting, is widely observed in vapor compression systems (VCSs), negatively affecting the operational safety and efficiency. As one of the most significant challenges present in VCS operation and control, operational instability has been extensively studied for decades. This paper reviews the current research state on the operational instability of VCSs, including the mechanisms for triggering hunting, the measures to mitigate hunting and the related unsolved issues. Two different views, i.e. the inherent characteristics of two-phase evaporating flow and dynamic characteristics of expansion (EV)-evaporator control loop, were classified for explaining the causes of hunting. As the typical characteristics of two-phase evaporating flow, the present of slug flow upstream in an evaporator, the sudden variation of heat transfer mechanism or two-phase flow instability would trigger the unexpected change of refrigerant temperature at evaporator exit. Consequently, operational instability will be resulted in. The dynamic behaviours of the EV-evaporator control loop in terms of its nonlinearities were considered as another essential factor that would cause system instability. Superheat setpoint adjustment and adaptive superheat control were suggested as two effective measures for mitigating hunting. With the increasing applications of vapor compression cycle for electronic cooling and the multi-evaporator VCSs, more effects should be done to investigate their operational instability with the consideration of two-phase flow instability and the coupling influences of each EV-evaporator control loop.
Available documents
Format PDF
Pages: 97-109
Available
Public price
20 €
Member price*
Free
* Best rate depending on membership category (see the detailed benefits of individual and corporate memberships).
Details
- Original title: A review on the operational instability of vapor compression system.
- Record ID : 30028101
- Languages: English
- Subject: Technology
- Source: International Journal of Refrigeration - Revue Internationale du Froid - vol. 122
- Publication date: 2021/02
- DOI: http://dx.doi.org/10.1016/j.ijrefrig.2020.10.024
- Document available for consultation in the library of the IIR headquarters only.
Links
See other articles in this issue (22)
See the source
-
Validation of advanced fin-and-tube heat exchan...
- Author(s) : SARFRAZ O., BACH C. K., BRADSHAW C. R.
- Date : 2020/08
- Languages : English
- Source: International Journal of Refrigeration - Revue Internationale du Froid - vol. 116
- Formats : PDF
View record
-
Graph-based dynamic modeling of two-phase heat ...
- Author(s) : RUSSEL K. M., AKSLAND C. T., ALLEYNE A. G.
- Date : 2022/05
- Languages : English
- Source: International Journal of Refrigeration - Revue Internationale du Froid - vol. 137
- Formats : PDF
View record
-
Experimental performance investigation of new L...
- Author(s) : NICOLETTE-BAKER A., GARR E., SATHE A., et al.
- Date : 2014/07/14
- Languages : English
- Source: 2014 Purdue Conferences. 15th International Refrigeration and Air-Conditioning Conference at Purdue.
- Formats : PDF
View record
-
Numerical study and identification of cooling o...
- Author(s) : SELIMEFENDIGIL F., ÖZTOP H. F.
- Date : 2014/05
- Languages : English
- Source: International Journal of thermal Sciences - vol. 79
View record
-
Compact refrigeration system for electronics co...
- Author(s) : OLIVEIRA P. A. de, BARBOSA J. R. Jr
- Date : 2016/07/11
- Languages : English
- Source: 2016 Purdue Conferences. 16th International Refrigeration and Air-Conditioning Conference at Purdue.
- Formats : PDF
View record