IIR document
Analytical solution of the governing equations for heat and mass transfer in evaporative cooling process.
Author(s) : ORTIZ DEL CASTILLO J. R., HERNANDEZ-CALDERON O., RIOS-IRIBE E., GONZALEZ-LLANES M. D., RUBIO-CASTRO E., CERVANTES-GAXIOLA M. E.
Type of article: IJR article
Summary
In this work, the governing equations of the heat and mass transfer in evaporative cooling process are solved by using the power series method. The physical properties, including the Lewis factor, are considered constant along the cooling process. The water loss from water stream vaporization is taken into account. An iterative procedure is developed for calculating the expansion coefficients of the humidity ratio, the air enthalpy, and the number of transfer units. In all study cases, the power series solution is convergent for the heat and mass transfer equations, except for the number of transfer units equation. Thus, Gauss quadrature technique is implemented as an alternative method for determining the number of transfer units profile. As a comparison, the study cases are also solved numerically by the Dormand-Prince Runge-Kutta method. The numerical and analytical results are found to be in excellent agreement when the mass flow-rate ratio between water and dry air is low. The computational execution time of the analytical solution is 50 times faster than the numerical solution. Furthermore, the proposed technique was applied to a study case previously reported and the results were properly represented with an average error of 3%.
Available documents
Format PDF
Pages: 178-187
Available
Public price
20 €
Member price*
Free
* Best rate depending on membership category (see the detailed benefits of individual and corporate memberships).
Details
- Original title: Analytical solution of the governing equations for heat and mass transfer in evaporative cooling process.
- Record ID : 30027377
- Languages: English
- Source: International Journal of Refrigeration - Revue Internationale du Froid - vol. 111
- Publication date: 2020/03
- DOI: http://dx.doi.org/10.1016/j.ijrefrig.2019.11.019
Links
See other articles in this issue (19)
See the source
Indexing
-
Themes:
Heat transfer;
Mass transfer - Keywords: Evaporative system; Heat transfer; Mass transfer; Enthalpy; Modelling
-
Influence of oil impurities on the value of ent...
- Author(s) : ZELEZNYJ V. P., PROCENKO D. A., ANTCHERBAK S. N., et al.
- Date : 2004
- Languages : Russian
- Source: Vestnik Mezdunarodarnoj Akademii Holoda - n. 3
View record
-
Influence of ambient conditions and water flow ...
- Author(s) : HE S., GUAN Z., GURGENCI H., et al.
- Date : 2014/05
- Languages : English
- Source: Applied Thermal Engineering - vol. 66 - n. 1-2
View record
-
Simultaneous heat and mass transfer to air from...
- Author(s) : ZHANG F., BOCK J., JACOBI A. M., et al.
- Date : 2014/02
- Languages : English
- Source: Applied Thermal Engineering - vol. 63 - n. 2
View record
-
Wplyw przyjetego rozkladu temperatury wody natr...
- Author(s) : PLUTA Z.
- Date : 2010/11
- Languages : Polish
- Source: Chlodnictwo - vol. 45 - n. 11
View record
-
The numerical model for direct evaporative cooler.
- Author(s) : KOVACEVIC I., SOURBRON M.
- Date : 2017/02/25
- Languages : English
- Source: Applied Thermal Engineering - vol. 113
View record