IIR document

CFD-based unsteady simulation and performance analysis of scroll compressor.

Author(s) : LIU X., GUO S., WANG Y., WANG D., WANG G., LI H.

Type of article: IJR article

Summary

The scroll compressor is an essential part of the heat pump air conditioning system in electric vehicles, with its performance and efficiency having a significant impact on the vehicle's range. This paper employs a combination of experimental and numerical simulations (using the dynamic mesh method) to study the scroll compressor in electric vehicles, exploring the effects of rotational speed and pressure ratio on compressor performance. The results reveal a significantly uneven temperature distribution across the chambers, primarily due to tangential leakage, which results in elevated temperatures in the central areas of the chambers and reduced temperatures near the meshing points. As the rotational speed increases, both the mass flow rate and the isentropic efficiency of the scroll compressor rise, whereas the discharge temperature declines; notably, discharge temperature drops by an average of 1.6 % for 600 r·min-1 increase in rotational speed. For each unit increase in the pressure ratio, the discharge temperature increases by an average of 12.22 K, while the mass flow rate decreases by 7.95 %. The study also shows that the isentropic efficiency initially rises with increasing pressure ratio, reaching a maximum of 67.06 % before starting to decline. These findings provide valuable insights into the performance characteristics of scroll compressors and offer theoretical support for optimizing compressor efficiency in practical applications.

Available documents

Format PDF

Pages: 150-163

Available

  • Public price

    20 €

  • Member price*

    Free

* Best rate depending on membership category (see the detailed benefits of individual and corporate memberships).

Details

  • Original title: CFD-based unsteady simulation and performance analysis of scroll compressor.
  • Record ID : 30033357
  • Languages: English
  • Source: International Journal of Refrigeration - Revue Internationale du Froid - vol. 170
  • Publication date: 2025/02
  • DOI: http://dx.doi.org/10.1016/j.ijrefrig.2024.11.026

Links


See other articles in this issue (37)
See the source