Comprehensive modeling of a chemical looping heat pump with a reverse fuel cell.
Number: 2489
Author(s) : KIM J., BRAUN J. E., GROLL E. A., ZIVIANI D.
Summary
HVAC, refrigeration, and water heating accounted for approximately 22 quads of primary energy consumed in the United States in 2018, according to US EIA. Most of HVAC&R industry still relies on vapor compression and heat-driven technologies. The development of highly efficient technologies that would significantly improve both COP and annual energy savings is an open challenge for the new decade. Among the novel technologies, the Chemical Looping Heat Pump (CLHP) combined with a reverse fuel cell has been modeled with estimates of a COP increase of over 20% relative to a conventional vapor compression (VC) cycle. However, limitations of simplified modeling efforts necessitate the development of a comprehensive mechanistic model to predict several physical phenomena for varying operating conditions and more accurately estimate performance.
In this work, a charge-sensitive mechanistic modeling approach is utilized to predict the performance of the CLHP system. A thermodynamic model is coupled with a discretized fuel cell model to estimate the energy savings potential. A moving boundary model is adopted to assess the steady-state heat transfer rate in the heat exchanger. Sensitivity analyses are used to identify the system behaviors and performance.
Available documents
Format PDF
Pages: 11
Available
Public price
20 €
Member price*
15 €
* Best rate depending on membership category (see the detailed benefits of individual and corporate memberships).
Details
- Original title: Comprehensive modeling of a chemical looping heat pump with a reverse fuel cell.
- Record ID : 30028492
- Languages: English
- Subject: Technology
- Source: 2021 Purdue Conferences. 18th International Refrigeration and Air-Conditioning Conference at Purdue.
- Publication date: 2021/05
- Document available for consultation in the library of the IIR headquarters only.
Links
See other articles from the proceedings (184)
See the conference proceedings
Indexing
-
Themes:
Energy efficiency, energy savings;
Heat pumps techniques - Keywords: Loop; Chemical heat pump; Fuel cell; Energy saving; Modelling
-
An air-water dual-source heat pump system for s...
- Author(s) : CHENG J. H., GAO P., CAO X., SHAO P., SHAO L. L., ZHANG C. L.
- Date : 2021/08/31
- Languages : English
- Source: 13th IEA Heat Pump Conference 2021: Heat Pumps – Mission for the Green World. Conference proceedings [full papers]
- Formats : PDF
View record
-
Application of multipurpose heat pumps in museu...
- Author(s) : SCHITO E., CONTI P., TESTI D.
- Date : 2023/05/15
- Languages : English
- Source: 14th IEA Heat Pump Conference 2023, Chicago, Illinois.
- Formats : PDF
View record
-
Evaluation of a ground source heat pump system ...
- Author(s) : EDWARDS K. C., JONES A. T., FINN D. P.
- Date : 2011/08/21
- Languages : English
- Source: Proceedings of the 23rd IIR International Congress of Refrigeration: Prague, Czech Republic, August 21-26, 2011. Overarching theme: Refrigeration for Sustainable Development.
- Formats : PDF
View record
-
Performance improvement of a novel BIPV/T-energ...
- Author(s) : WANG F., YOU T.
- Date : 2023/08/21
- Languages : English
- Source: Proceedings of the 26th IIR International Congress of Refrigeration: Paris , France, August 21-25, 2023.
- Formats : PDF
View record
-
Energy, environmental, and economic evaluations...
- Author(s) : ZHU M., OH J., KIM J., BRAUN J. E., GROLL E. A., ZIVIANI D.
- Date : 2024/08
- Languages : English
- Source: 16th IIR-Gustav Lorentzen Conference on Natural Refrigerants (GL2024). Proceedings. University of Maryland, College Park, Maryland, USA, August 11-14 2024
- Formats : PDF
View record