Correction of log mean temperature difference method and effectiveness-NTU relations for two-phase heat transfer with pressure drop and temperature glide.
Number: pap. 2322
Author(s) : QIAO H.
Summary
The Logarithmic Mean Temperature Difference (LMTD) method and the effectiveness-NTU method are the two important methods for design and analysis of heat exchangers. The derivation of these two methods relies on a critical assumption, i.e., the fluid specific heats are constant. Under special operating conditions where one fluid experiences condensation or evaporation at constant temperature, these two methods are still valid. In practice, however, the fluid temperature in heat exchangers will never remain constant during phase change because of pressure drop. Meanwhile, zeotropic refrigerant mixtures exhibit temperature variations even during a constant pressure phase change process. Therefore, both LMTD and effectiveness-NTU methods can introduce appreciable errors when applying to the cases in which refrigerant temperature change is not caused by heat transfer, rather than by pressure drop or temperature glide. This paper proposes modified LMTD method and effectiveness-NTU relations to remove the restriction of constant temperature phase change in the original approaches. The new methods account for the effects of pressure drop and temperature glide on the two-phase heat transfer process and make corresponding corrections based on simplifying assumptions. The new methods are applicable for both parallel-flow and counter-flow configurations, with phase change on one side. Rigorous error analyses indicate that the new approaches can substantially improve the thermal performance prediction for heat exchangers with large pressure drop and temperature glide.
Available documents
Format PDF
Pages: 10
Available
Public price
20 €
Member price*
15 €
* Best rate depending on membership category (see the detailed benefits of individual and corporate memberships).
Details
- Original title: Correction of log mean temperature difference method and effectiveness-NTU relations for two-phase heat transfer with pressure drop and temperature glide.
- Record ID : 30024495
- Languages: English
- Source: 2018 Purdue Conferences. 17th International Refrigeration and Air-Conditioning Conference at Purdue.
- Publication date: 2018/07/09
Links
See other articles from the proceedings (252)
See the conference proceedings
-
Updated model for two phase frictional pressure...
- Author(s) : DEL COL D., BISETTO A., BORTOLATO M., et al.
- Date : 2012/10/25
- Languages : English
- Source: RCR 2012. 3rd IIR Workshop on Refrigerant Charge Reduction in Refrigerating Systems: Valencia, Spain, October 25-26, 2012.
- Formats : PDF
View record
-
Simplified correlation equations of heat transf...
- Author(s) : HAMMAD M., TARAWNEH M., ALSHQIRATE A.
- Date : 2012/09/10
- Languages : English
- Source: 4th Jordanian IIR International Conference on Refrigeration and Air Conditioning. Proceedings: Amman, Jordan, September 10-12, 2012.
- Formats : PDF
View record
-
Designing and testing an air PCM heat exchanger...
- Author(s) : DECHESNE B., GENDEBIEN S., MARTENS J., et al.
- Date : 2014/07/14
- Languages : English
- Source: 2014 Purdue Conferences. 15th International Refrigeration and Air-Conditioning Conference at Purdue.
- Formats : PDF
View record
-
Falling film flow and evaporation characteristi...
- Author(s) : HU H., DING C., LI J., et al.
- Date : 2016/06/22
- Languages : English
- Source: 1st IIR International Conference of Cryogenics and Refrigeration Technology (ICCRT 2016). Proceedings: Bucharest, Romania, June 22-25, 2016.
- Formats : PDF
View record
-
Development of macroscopic two-phase flow model...
- Author(s) : SEPTET C., HUGO J.-M., LEMETAYER O., et al.
- Date : 2019/08/24
- Languages : English
- Source: Proceedings of the 25th IIR International Congress of Refrigeration: Montréal , Canada, August 24-30, 2019.
- Formats : PDF
View record