Demand side management and battery storage utilization to increase PV self-consumption of a modulating heat pump.
Number: 3317
Author(s) : PINAMONTI M., PRADA A., BAGGIO P.
Summary
The combination of photovoltaic (PV) systems and heat pumps for heating and cooling of buildings is a promising solution to increase the share of renewable energy in the residential sector. The interaction between the system components is fundamental to assure a high performance of the system. The level of PV energy self-consumption is strictly dependent on the control strategy applied to the system. The solar source is intermittent and it does not always match the building loads for heating and cooling. Furthermore, even the heating and cooling demands are strongly time-dependent in high performance buildings. For these reasons, an efficient control system is essential to ensure the high performance. Several papers in the literature have proposed advanced control techniques based on the model predictive control (MPC). However, their implementation in residential buildings is often limited due to high device costs. This paper proposes a rule-based control strategy for a modulating air-source heat pump coupled with a PV plant, which provide space heating, space cooling and domestic hot water in a residential building. The proposed control strategy can be easily implemented in residential buildings by using low-cost board shields. The heat pump is modulated and optimized depending on the instantaneous PV production, to maximize the direct use of solar energy onsite. When an overproduction of PV energy occurs, the heat pump operates to store the solar energy as thermal energy, exploiting thermal storage tanks and the building thermal capacitance (aka virtual battery). The heat pump is controlled by varying its compressor rotational speed. The compressor is regulated to operate at the maximum capacity level compatible with the supplied PV power. The control strategy is evaluated in combination with a electric storage system. The efficacy of the control strategy is assessed by means of dynamic energy simulations. The simulations are run for the whole year. A parametric analysis is carried out by considering different PV and battery size, to understand the impact of the system component size on the results.
Available documents
Format PDF
Pages: 10
Available
Public price
20 €
Member price*
15 €
* Best rate depending on membership category (see the detailed benefits of individual and corporate memberships).
Details
- Original title: Demand side management and battery storage utilization to increase PV self-consumption of a modulating heat pump.
- Record ID : 30028640
- Languages: English
- Source: 2021 Purdue Conferences. 6th International High Performance Buildings Conference at Purdue.
- Publication date: 2021/05/24
- Document available for consultation in the library of the IIR headquarters only.
Links
See other articles from the proceedings (52)
See the conference proceedings
Indexing
-
Heating and cooling performance of a minitype g...
- Author(s) : ZHAI X. Q., CHENG X. W., WANG R. Z.
- Date : 2017/01/25
- Languages : English
- Source: Applied Thermal Engineering - vol. 111
View record
-
Units for 4-pipe systems for simultaneous produ...
- Author(s) : ROSSI L. de, BUSNARDO E.
- Date : 2011/04/05
- Languages : English
- Source: Sources/sinks Alternative to the Outside Air for Heat Pump and Air-conditioning Techniques (Alternative Sources - AS), Padua, Italy, April 5-7, 2011. / International Sorption Heat Pump Conference (ISHPC11), Padua, Italy, April 6-8, 2011.
- Formats : PDF
View record
-
Detailed monitoring analysis of two residential...
- Author(s) : DERMENTZIS G., OCHS F.
- Date : 2018/07/09
- Languages : English
- Source: 2018 Purdue Conferences. 5th International High Performance Buildings Conference at Purdue.
- Formats : PDF
View record
-
Energy simulation and optimized retrofit practi...
- Author(s) : MARINELLO G., CASKEY S. L., BOWLER E. J., et al.
- Date : 2014/07/14
- Languages : English
- Source: 2014 Purdue Conferences. 3rd International High Performance Buildings Conference at Purdue.
- Formats : PDF
View record
-
Photovoltaic/Thermal (PV/T) to drive a dual sou...
- Author(s) : LAZZARIN R., NORO M.
- Date : 2019/08/24
- Languages : English
- Source: Proceedings of the 25th IIR International Congress of Refrigeration: Montréal , Canada, August 24-30, 2019.
- Formats : PDF
View record