Determination of film cooling effectiveness and heat transfer coefficient simultaneously on a flat plate.
Author(s) : ZHANG M.
Type of article: Periodical article
Summary
In this paper, flat plate film cooling with two rows of compound angle cylindrical film cooling holes was investigated. A data processing method was evaluated which could determine the film cooling effectiveness and heat transfer coefficient simultaneously from the transient wall temperature data. The method was based on solving an inverse problem of the one-dimensional transient heat conduction equation. To evaluate the performance of the method, wall temperature data were obtained using the known film cooling effectiveness and heat transfer coefficient data as the convection boundary condition. Then, the method was applied to calculate the film cooling effectiveness and heat transfer coefficient based on the wall temperature data. Different blowing ratios, heat transfer coefficients, mainstream temperatures, and material thermal conductivities were investigated. In general, the data and calculation were in good agreement. It was found that the error decreased when the heat transfer coefficient increased and the material thermal conductivity decreased. The percentage error of the span-wise averaged film cooling effectiveness was mainly between 0% and 10%, and the percentage error of the span-wise averaged heat transfer coefficient was mainly between 0% and 4%.
Available documents
Format PDF
Pages: 11 p.
Available
Free
Details
- Original title: Determination of film cooling effectiveness and heat transfer coefficient simultaneously on a flat plate.
- Record ID : 30029884
- Languages: English
- Subject: Technology
- Source: Energies - vol. 15 - n. 11
- Publishers: MDPI
- Publication date: 2022/06
- DOI: http://dx.doi.org/10.3390/en15114144
Links
See other articles in this issue (6)
See the source
Indexing
-
Themes:
Heat transfer;
Other industrial applications - Keywords: Heat transfer coefficient; Film; Cooling; Modelling; CFD; Simulation; Calculation
-
Numerical Investigation on Backward-Injection F...
- Author(s) : ZHANG S., WANG C., TAN X., ZHANG J., GUO J.
- Date : 2022/06
- Languages : English
- Source: Energies - vol. 15 - n. 12
- Formats : PDF
View record
-
Numerical simulation of liquid film and regener...
- Author(s) : YANG W., SUN B.
- Date : 2013/05
- Languages : English
- Source: Applied Thermal Engineering - vol. 54 - n. 2
View record
-
Effects of Bulk Flow Pulsation on Film Cooling ...
- Author(s) : BAEK S-I., AHN J.
- Date : 2022/04
- Languages : English
- Source: Energies - vol. 15 - n. 7
- Formats : PDF
View record
-
APPLYING HEAT TRANSFER COEFFICIENT DATA TO ELEC...
- Author(s) : MOFFAT R. J., ANDERSON A. M.
- Date : 1990
- Languages : English
- Source: J. Heat Transf. - vol. 112 - n. 4
View record
-
An LBM-Based Investigation on the Mixing Mechan...
- Author(s) : SHANGGUAN Y., CAO F.
- Date : 2022/07
- Languages : English
- Source: Energies - vol. 15 - n. 13
- Formats : PDF
View record