IIR document

Dynamic operation of an active magnetic regenerator (AMR): numerical optimization of a packed-bed AMR.

Author(s) : TUSEK J., KITANOVSKI A., PREBIL I., et al.

Type of article: Article, IJR article

Summary

A new, fast and flexible, time-dependent, one-dimensional numerical model was developed in order to study in detail the operation of an active magnetic regenerator (AMR). The model is based on a coupled system of equations (for the magnetocaloric material and the heat-transfer fluid) that have been solved simultaneously with the software package MATLAB. The model can be employed to analyze a wide range of different operating conditions (mass-flow rate, operating frequency, magnetic field change), different AMR geometries, different magnetocaloric materials and heat-transfer fluids, layered and single-bed AMRs, etc. This paper also presents an optimization of the AMR’s geometry, where the AMR consists of a packed-bed of grains (spheres) of gadolinium (Gd). The optimization of the mass-flow rate and the operating frequency of the AMR were performed by studying five different diameters of Gd spheres.

Available documents

Format PDF

Pages: 1507-1517

Available

  • Public price

    20 €

  • Member price*

    Free

* Best rate depending on membership category (see the detailed benefits of individual and corporate memberships).

Details

  • Original title: Dynamic operation of an active magnetic regenerator (AMR): numerical optimization of a packed-bed AMR.
  • Record ID : 30001539
  • Languages: English
  • Source: International Journal of Refrigeration - Revue Internationale du Froid - vol. 34 - n. 6
  • Publication date: 2011/09

Links


See other articles in this issue (20)
See the source