IIR document
Energy separation mechanism in unconfined laminar compressible vortex.
Author(s) : KATANODA H., BIN YUSOF M. H., MORITA H.
Type of article: Article, IJR article
Summary
A theoretical investigation from the view point of gas-dynamics and thermodynamics was carried out, in order to clarify the energy separation mechanism in an unconfined laminar compressible vortex, as a primary flow element of a vortex tube. The mathematical solutions of density and temperature in a viscous compressible vortical flow, with tangential velocity, were examined using an evaluation equation of total temperature. It is found from the results that a hotter gas in the peripheral region of the vortex is mainly generated by heat caused by viscous dissipation. A colder gas in the vortex center is mainly generated by viscous shear work done by the fluid element onto the surface of the surrounding gas. In addition, it is also found that the larger the representative Mach number of a vortex is, the lower the total temperature at the center of the vortex is, and at the same time, the higher the maximum total temperature in the peripheral region is. The increase in specific heat ratio of the working gas has the same effect, as increasing the representative Mach number of the vortex, on the total temperature in the vortex.
Available documents
Format PDF
Pages: 115-123
Available
Public price
20 €
Member price*
Free
* Best rate depending on membership category (see the detailed benefits of individual and corporate memberships).
Details
- Original title: Energy separation mechanism in unconfined laminar compressible vortex.
- Record ID : 30016283
- Languages: English
- Source: International Journal of Refrigeration - Revue Internationale du Froid - vol. 59
- Publication date: 2015/11
Links
See other articles in this issue (27)
See the source
Indexing
-
A critical review on the flow structure studies...
- Author(s) : GUO X., ZHANG B., LIU B., et al.
- Date : 2019/08
- Languages : English
- Source: International Journal of Refrigeration - Revue Internationale du Froid - vol. 104
- Formats : PDF
View record
-
A new design method of vortex tube based on uns...
- Author(s) : LIU B., GUO X., ZHANG B.
- Date : 2019/08/24
- Languages : English
- Source: Proceedings of the 25th IIR International Congress of Refrigeration: Montréal , Canada, August 24-30, 2019.
- Formats : PDF
View record
-
Heat transfer enhancement in a novel internally...
- Author(s) : ZHENG N., LIU P., SHAN F., et al.
- Date : 2016/02/25
- Languages : English
- Source: Applied Thermal Engineering - vol. 95
View record
-
Effect of jet nozzle geometry on flow and heat ...
- Author(s) : DU C., LI L., WU X., et al.
- Date : 2016/01/25
- Languages : English
- Source: Applied Thermal Engineering - vol. 93
View record
-
Experimental study of the energy separation in ...
- Author(s) : LI N., ZENG Z. Y., WANG Z., et al.
- Date : 2014/08/02
- Languages : English
- Source: 11th IIR Gustav Lorentzen Conference on Natural Refrigerants (GL2014). Proceedings. Hangzhou, China, August 31-September 2, 2014.
- Formats : PDF
View record