Evaluation of contact resistance and fin effectiveness of enhanced, brazed “dogbone” fin and serpentine tube heat exchangers for air conditioning and heat pump applications.
Number: 2188
Author(s) : BACELLAR D., LI S., MARTIN C., SHABTAY Y., BLACK J.
Summary
The energy consumption due to air conditioning is projected to increase by 1.3 and 4.5 times by 2050 compared to 2010 for members and non-members of the Organization of Economic Coordination and Development (OECD), respectively. Greenhouse Gas (GHG) emissions must be carefully managed to minimize their hazardous contribution to climate change. Air conditioners (AC) and heat pumps (HP) contribute with direct GHG emissions through systemic refrigerant leakage, which consequently degrades the system’s performance and therefore increases its indirect GHG emissions as well. To address this issue, the goals of new systems include minimizing leakage risk, using low global warming potential (GWP) refrigerants such as natural refrigerants, and increasing system efficiency. This paper presents part of the efforts in the development of a brazed “dogbone” fin to continuous serpentine tube heat exchanger (HX) for AC/HP applications. The main advantages of such technology are: 1) The potential to reduce 90% or more of the tube return-bends brazed joints compared to conventional tube-fin heat exchangers, thus minimizing leakage vulnerability, enabling the use of natural refrigerants like Propane and Ammonia that carry other concerning risks of flammability and toxicity ; and 2) The brazed fin to the tube joints should yield very low contact resistance. In order to quantify and estimate the impacts of contact resistance and fin effectiveness, a numerical-experimental study is investigated. The novel enhanced brazed “dog-bone” fin is compared to an equivalent pressure expanded fin. The results showed that the expanded fin has consistently greater effective heat transfer but greater contact resistance as well. Furthermore, the brazed fins have up to 20% lower pressure drop. The trade-off comparison shows that the thermal-hydraulic ratio between the two fins is equivalent for air velocities below 2m/s; for greater velocities, however, the expanded fin is favored since it has less fin efficiency penalty. For HVAC&R applications, the air velocities are typically low which makes the proposed technology competitive and a viable option in the pursuit of refrigerant leakage reduction.
Available documents
Format PDF
Pages: 8
Available
Public price
20 €
Member price*
15 €
* Best rate depending on membership category (see the detailed benefits of individual and corporate memberships).
Details
- Original title: Evaluation of contact resistance and fin effectiveness of enhanced, brazed “dogbone” fin and serpentine tube heat exchangers for air conditioning and heat pump applications.
- Record ID : 30028433
- Languages: English
- Subject: Technology
- Source: 2021 Purdue Conferences. 18th International Refrigeration and Air-Conditioning Conference at Purdue.
- Publication date: 2021/05
- Document available for consultation in the library of the IIR headquarters only.
Links
See other articles from the proceedings (184)
See the conference proceedings
Indexing
-
Reduced order modeling for multi-circuit fin-an...
- Author(s) : SARFRAZ O., BACH C. K., BRADSHAW C. R.
- Date : 2019/10
- Languages : English
- Source: International Journal of Refrigeration - Revue Internationale du Froid - vol. 106
- Formats : PDF
View record
-
Analysis of the refrigerant maldistribution of ...
- Author(s) : ALVAREZ L., ALBALADEJO P., NAVARRO-PERIS E., SCHNABEL L., CORBERÁN J. M.
- Date : 2021/08/31
- Languages : English
- Source: 13th IEA Heat Pump Conference 2021: Heat Pumps – Mission for the Green World. Conference proceedings [full papers]
- Formats : PDF
View record
-
Single phase pressure drop and flow distributio...
- Author(s) : LI W., HRNJAK P.
- Date : 2016/07/11
- Languages : English
- Source: 2016 Purdue Conferences. 16th International Refrigeration and Air-Conditioning Conference at Purdue.
- Formats : PDF
View record
-
Simple coil design: methods that work.
- Author(s) : WERNICK B.
- Date : 2011/10
- Languages : English
- Source: RACA Journal - vol. 27 - n. 8
- Formats : PDF
View record
-
Experimental quantification of air-side row-by-...
- Author(s) : CHE M., ELBEL S.
- Date : 2021/11
- Languages : English
- Source: International Journal of Refrigeration - Revue Internationale du Froid - vol. 131
- Formats : PDF
View record