Examination of heat transfer correlations and a model for flow boiling of R-134a in small diameter tubes.

Author(s) : SHIFERAW D., HUO X., KARAYIANNIS T. G., et al.

Type of article: Article

Summary

Analysis of various existing correlations including a three-zone evaporation model is made using a comparison with recent experimental results obtained in this study. Flow boiling heat transfer experiments were conducted with two stainless steel tubes of internal diameter 4.26 and 2.01 mm. The working fluid was R-134a and parameters were varied in the range: mass flux 100-500 kg/m2.s; pressure 8-12 bar; quality up to 0.9; heat flux 13-150 kW/m2. The local heat transfer coefficient was independent of vapour quality when this was less than about 40-50% in the 4.26 mm tube and 20-30% in the 2.01 mm tube. Local transient dryout was deduced when the quality was above these values. Furthermore, at high heat flux values the heat transfer coefficient decreased with vapour quality for the entire quality range indicating early occurrence of dryout. Existing correlations, which are based on large tube boiling processes, do not predict the present small diameter data to a satisfactory degree. A better agreement is observed with the recent, state-of-the-art, three-zone evaporation model. However, the model does not predict the effect of diameter and the partial dryout. Nevertheless, the observation suggests that the flow pattern based modelling approach performs at least as well as empirical correlations that are based on macroscale modelling. Aspects of the model that need further consideration are also proposed in this study. [Reprinted with permission from Elsevier. Copyright, 2007].

Details

  • Original title: Examination of heat transfer correlations and a model for flow boiling of R-134a in small diameter tubes.
  • Record ID : 2008-1219
  • Languages: English
  • Source: International Journal of Heat and Mass Transfer - vol. 50 - n. 25-26
  • Publication date: 2007/12

Links


See other articles in this issue (6)
See the source