IIR document

Experimental evaluation of a controlled hybrid two-phase multi-microchannel cooling and heat recovery system driven by liquid pump and vapor compressor.

Author(s) : WU D., MARCINICHEN J. B., THOME J. R.

Type of article: Article, IJR article

Summary

The energy use in data centers is on an accelerating rise due to both demand and technological limitations. Today, the most widely used cooling strategy for data centers is refrigerated air-cooling. Unfortunately, air-cooling presents phenomenally low efficiencies. Therefore green computing paradigms are needed to improve energy efficiency by several orders of magnitude and allow a continued chip scaling for tackling the energy crisis in future-generation data centers. A promising solution would be implementing direct on-chip two-phase cooling technology, which not only improves the heat removal efficiency but also permits the reuse of waste heat since the two-phase coolant can cool CPUs effectively at 60°C. In the present work a specific cooling cycle using micro-evaporation technology has been experimentally evaluated considering different aspects such as cooling cycle and energy recovery efficiencies and controllability. In resume, this novel cycle shows strong competence in energy usage, heat recovery and controllability towards green data center.

Available documents

Format PDF

Pages: 375-389

Available

  • Public price

    20 €

  • Member price*

    Free

* Best rate depending on membership category (see the detailed benefits of individual and corporate memberships).

Details

  • Original title: Experimental evaluation of a controlled hybrid two-phase multi-microchannel cooling and heat recovery system driven by liquid pump and vapor compressor.
  • Record ID : 30007049
  • Languages: English
  • Source: International Journal of Refrigeration - Revue Internationale du Froid - vol. 36 - n. 2
  • Publication date: 2013/03

Links


See other articles in this issue (26)
See the source