IIR document

Experimental investigation on the use of CuO/water nanofluid in horizontal spiral-coil ground heat exchanger.

Author(s) : LIU Q., TAO Y., SHI L., ZHOU T., HUANG Y., PENG Y., WANG Y., TU J.

Type of article: IJR article

Summary

The thermal performance of a ground heat exchanger (GHE) largely depends on the heat transfer fluid circulating in the system. In this study, a laboratory test apparatus for a horizontal spiral-coil ground heat exchanger (HSGHE) was designed and constructed to investigate the effects of different volume fractions of CuO/water nanofluid on the energy efficiency of the HSGHE. The results showed that, at a volumetric fraction of 1%, the CuO/water nanofluid led to a 9.4% increase in the heat exchange rate of the HSGHE, compared to water. In addition, the heat transfer enhancement effect at a lower volume fraction of the CuO/water nanofluid was greater than the effect of its viscosity on the performance of the HSGHE. The CuO/water nanofluid with a volumetric fraction of 1% was not recommended for use in the HSGHE owing to its performance efficiency coefficient (PEC) of less than 1. The optimal volume fraction was 0.5%, at which the PEC was the highest (1.025). Therefore, it was determined that the utilization of a low volume fraction of CuO/water nanofluid in HSGHE provides energy efficiency enhancements independent of the GHE design.

Available documents

Format PDF

Pages: 204-223

Available

  • Public price

    20 €

  • Member price*

    Free

* Best rate depending on membership category (see the detailed benefits of individual and corporate memberships).

Details

  • Original title: Experimental investigation on the use of CuO/water nanofluid in horizontal spiral-coil ground heat exchanger.
  • Record ID : 30031584
  • Languages: English
  • Subject: Technology
  • Source: International Journal of Refrigeration - Revue Internationale du Froid - vol. 149
  • Publication date: 2023/05
  • DOI: http://dx.doi.org/10.1016/j.ijrefrig.2022.12.011

Links


See other articles in this issue (24)
See the source