Experimental study on liquid film thickness of annular flow in microchannels.

Number: pap. 2594

Author(s) : YOSHINAGA Y., PENG H., DANG C., et al.

Summary

Many studies were carried out to investigate the flow and heat transfer characteristics of two-phase flow in microchannels because of its advantage in improving heat exchange performance, it has been well revealed that liquid film thickness and flow pattern play important roles in determining the heat transfer characteristics. However, these data is still limited to understanding properties of two-phase flow in microchannels because both the effect of tube size, geometry and physical property of working fluids have be taken into account. In this study, visual observation of flow pattern by using a high-speed camera and direct measurement of liquid film thickness by using a laser displacement meter for annular flow inside microchannels with inner diameter of 0.5 mm, 1 mm and 2 mm were conducted. 5 fluids with different surface tension and viscosity (water, ethanol, FC72, KF-96L-0.65cs, KF-96L-2cs) were selected to investigate the effect of physical properties on the flow pattern and liquid film thickness. Experimental results were compared with numerical simulation model results to provide better understanding of two phase flow and heat transfer characteristics at various tube scales and working fluid physical properties.

Available documents

Format PDF

Pages: 10 p.

Available

  • Public price

    20 €

  • Member price*

    15 €

* Best rate depending on membership category (see the detailed benefits of individual and corporate memberships).

Details

  • Original title: Experimental study on liquid film thickness of annular flow in microchannels.
  • Record ID : 30013227
  • Languages: English
  • Source: 2014 Purdue Conferences. 15th International Refrigeration and Air-Conditioning Conference at Purdue.
  • Publication date: 2014/07/14

Links


See other articles from the proceedings (203)
See the conference proceedings