IIR document

FEMCE – A 3D finite element simulation tool for magnetic refrigerants.

Author(s) : KIEFE R., AMARAL J. S.

Type of article: IJR article

Summary

A critical challenge for magnetic refrigeration is designing shape-optimized refrigerants. When applying a magnetic field to the refrigerant, its magnetocaloric effect (MCE) heterogeneity is directly related to the demagnetizing field (a geometric phenomenon). Striking a balance between the total mass/volume of refrigerant, and its effective performance at a given temperature and applied magnetic field is a complex non-linear magnetostatics problem. We present a tool for estimating both the spatially-resolved and effective MCE for any refrigerant design, via the 3D finite element method - Finite Element Magnetocaloric Effect (FEMCE). FEMCE allows the user to input complex refrigerant shapes, together with the thermophysical properties of the material, to estimate and optimize its refrigerant performance for a given temperature and applied magnetic field change. The tool can be readily employed for both the conventional and demagnetizing-field induced MCE.

Available documents

Format PDF

Pages: 180-184

Available

  • Public price

    20 €

  • Member price*

    Free

* Best rate depending on membership category (see the detailed benefits of individual and corporate memberships).

Details

  • Original title: FEMCE – A 3D finite element simulation tool for magnetic refrigerants.
  • Record ID : 30033831
  • Languages: English
  • Source: International Journal of Refrigeration - Revue Internationale du Froid - vol. 173
  • Publication date: 2025/05
  • DOI: http://dx.doi.org/10.1016/j.ijrefrig.2025.02.017

Links


See other articles in this issue (17)
See the source