Heat transfer, flow regime and instability of a nano- and micro-porous structure evaporator in a two-phase thermosiphon loop.

Author(s) : KHODABANDEH R., FURBERG R.

Type of article: Article

Summary

Two-phase flow instabilities which may occur at low and high heat loads were studied for a thermosiphon loop with R134a as refrigerant. The heat transfer surface of the evaporator was enhanced with a copper nano- and micro-porous structure. The heat transfer of the enhanced evaporator was compared to a smooth surface evaporator. Finally, the influence of the liquid level and the inside diameter of the riser on the instability of the system have been investigated. It was found that the enhanced structure surface decreased the oscillations at the entire range of heat fluxes and enhanced the heat transfer coefficient. Three flow regimes were observed: bubbly flow with nucleate boiling heat transfer mechanism, confined bubbly/churn flow with backflow and finally churn flow at high heat fluxes. [Reprinted with permission from Elsevier. Copyright, 2010].

Details

  • Original title: Heat transfer, flow regime and instability of a nano- and micro-porous structure evaporator in a two-phase thermosiphon loop.
  • Record ID : 2011-0102
  • Languages: English
  • Source: International Journal of thermal Sciences - vol. 49 - n. 7
  • Publication date: 2010/07
  • DOI: http://dx.doi.org/10.1016/j.ijthermalsci.2010.01.016

Links


See other articles in this issue (4)
See the source