IIR document

Improving liquid desiccant dehumidifiers through square baffle plate design and nanofluid innovation.

Author(s) : KOL S., ARYA M.

Type of article: IJR article

Summary

Enhancing the performance of the liquid desiccant dehumidifier (LDDs) is pivotal, with mass transfer playing a significant role. Compared to the previous method, using a baffles plate improved liquid desiccant dehumidification performance. The study utilized an aqueous solution containing nanocarbon tubes (NCTs) in LiCl/H2O as the desiccant, cascading over baffles plate with a square profile. The performance of this system was determined using numerical methods. The concentrations of NCTs ranged from 0.03 % to 0.05 % by weight. Furthermore, this paper investigates the impact of nanoparticles and parameters, including flow rates, solution concentration, humidity, solution temperature, etc. on the analysis through Computational Fluid Dynamics (CFD) simulation. The study shows a 29 % increase in moisture removal and humidity change, along with a 15.57 % improvement in film thickness. These findings are underpinned by the principle of a reduced in contact angle from 57° to 29°, resulting in reduced partial pressure of water vapor from the solution, thereby enhancing the mass transfer mechanism. Consequently, the utilization of baffles plate demonstrates a significant improvement in the moisture removal performance of the LDDs.

Available documents

Format PDF

Pages: 440-452

Available

  • Public price

    20 €

  • Member price*

    Free

* Best rate depending on membership category (see the detailed benefits of individual and corporate memberships).

Details

  • Original title: Improving liquid desiccant dehumidifiers through square baffle plate design and nanofluid innovation.
  • Record ID : 30033490
  • Languages: English
  • Source: International Journal of Refrigeration - Revue Internationale du Froid - vol. 170
  • Publication date: 2025/02
  • DOI: http://dx.doi.org/10.1016/j.ijrefrig.2024.12.009

Links


See other articles in this issue (36)
See the source