Integration of photovoltaics into building energy usage through advanced control of rooftop unit.

Number: pap. 3623

Author(s) : STARKE M., NUTARO J., IRMINGER P., et al.

Summary

This paper presents a computational approach to forecast photovoltaic (PV) power in kW based on a neural network linkage of publicly available cloud cover data and on-site solar irradiance sensor data. We also describe a control approach to utilize rooftop air conditioning units (RTUs) to support renewable integration. The PV forecasting method is validated using data from a rooftop PV panel installed on the Distributed Energy, Communications, and Controls (DECC) laboratory at Oak Ridge National Laboratory. The validation occurs in multiple phases to ensure that each component of the approach is the best representation of the actual expected output. The control of the RTU is based on model predictive methods.

Available documents

Format PDF

Pages: 10 p.

Available

  • Public price

    20 €

  • Member price*

    15 €

* Best rate depending on membership category (see the detailed benefits of individual and corporate memberships).

Details

  • Original title: Integration of photovoltaics into building energy usage through advanced control of rooftop unit.
  • Record ID : 30013764
  • Languages: English
  • Source: 2014 Purdue Conferences. 3rd International High Performance Buildings Conference at Purdue.
  • Publication date: 2014/07/14

Links


See other articles from the proceedings (66)
See the conference proceedings