Recommended by the IIR / IIR document

Investigation of ORC architectures for high-temperature WHR from naval ship service diesel generators (SSDGs).

Summary

Naval vessels typically require several ship service diesel generators (SSDGs) for electricity generation with an average thermal efficiency of approximately 40-45%. Waste heat SSDGs represents a significant opportunity to drive bottoming Organic Rankine Cycles (ORCs) to increase their fuel efficiency. Waste heat streams include both high-temperature exhaust gases and low-temperature cooling loops. In this work, a comprehensive numerical analysis is carried out to compare different cycle architectures to maximize the ORC power output at both full- and part-load SSDG conditions. Both subcritical and transcritical cycle architectures with evaporators in series and in parallel have been investigated. Novel, high-speed, spinning scroll expanders have been considered as expansion devices. Parametric studies were conducted to assess the trade-off between ORC output and effectiveness of operation to determine an optimum payback period.

Available documents

Format PDF

Pages: 9

Available

  • Public price

    20 €

  • Member price*

    Free

* Best rate depending on membership category (see the detailed benefits of individual and corporate memberships).

Details

  • Original title: Investigation of ORC architectures for high-temperature WHR from naval ship service diesel generators (SSDGs).
  • Record ID : 30027748
  • Languages: English
  • Subject: Technology
  • Source: IIR Rankine Conference 2020.
  • Publication date: 2020/07/31
  • DOI: http://dx.doi.org/10.18462/iir.rankine.2020.1181

Links


See other articles from the proceedings (75)
See the conference proceedings