Long term thermal energy storage with stable supercooled sodium acetate trihydrate.
Author(s) : DANNEMAND M., SCHULTZ J. M., JOHANSEN J. B., et al.
Type of article: Article
Summary
Utilizing stable supercooling of sodium acetate trihydrate makes it possible to store thermal energy partly loss free. This principle makes seasonal heat storage in compact systems possible. To keep high and stable energy content and cycling stability phase separation of the storage material must be avoided. This can be done by the use of the thickening agents carboxymethyl cellulose or xanthan rubber. Stable supercooling requires that the sodium acetate trihydrate is heated to a temperature somewhat higher than the melting temperature of 58 °C before it cools down. As the phase change material melts it expands and will cause a pressure built up in a closed chamber which might compromise stability of the supercooling. This can be avoided by having an air volume above the phase change material connected to an external pressure less expansion tank. Supercooled sodium acetate trihydrate at 20 °C stores up to 230 kJ/kg. TRNSYS simulations of a solar combi system including a storage with four heat storage modules of each 200 kg of sodium acetate trihydrate utilizing stable supercooling achieved a solar fraction of 80% for a low energy house in Danish climatic conditions.
Details
- Original title: Long term thermal energy storage with stable supercooled sodium acetate trihydrate.
- Record ID : 30017172
- Languages: English
- Source: Applied Thermal Engineering - vol. 91
- Publication date: 2015/12/05
- DOI: http://dx.doi.org/10.1016/j.applthermaleng.2015.08.055
Links
See other articles in this issue (57)
See the source
Indexing
-
Supercooling stability of sodium acetate trihyd...
- Author(s) : DANNEMAND M., FURBO S.
- Date : 2018/05/21
- Languages : English
- Source: 12th IIR Conference on Phase-Change Materials and Slurries for Refrigeration and Air Conditioning. Proceedings: Orford, Canada, May 21-23, 2018.
- Formats : PDF
View record
-
Visualization of the phase change behavior of s...
- Author(s) : OUCHI Y., SOMEYA S., MUNAKATA T., et al.
- Date : 2015/12/05
- Languages : English
- Source: Applied Thermal Engineering - vol. 91
View record
-
Numerical simulation on the phase change proces...
- Author(s) : DU Q., LIN W., CHEN M., YU T., CHEN Y., SONG W., LI Y., FENG Z.
- Date : 2024/05/31
- Languages : English
- Source: 14th IIR Conference on Phase-Change Materials and Slurries for Refrigeration and Air Conditioning. Proceedings: Paris France, May 29-31, 2024.
- Formats : PDF
View record
-
Investigations on the stability of metallic can...
- Author(s) : BIEDENBACH M., KLÜNDER F., GSCHWANDER S.
- Date : 2018/05/21
- Languages : English
- Source: 12th IIR Conference on Phase-Change Materials and Slurries for Refrigeration and Air Conditioning. Proceedings: Orford, Canada, May 21-23, 2018.
- Formats : PDF
View record
-
Perspective of CO2 hydrate slurry application i...
- Author(s) : CHEN W., LIU N., XIAO C., et al.
- Date : 2012/06
- Languages : Chinese
- Source: Journal of Refrigeration - vol. 33 - n. 145
- Formats : PDF
View record