IIR document

Research progress of stability and supercooling in phase change material emulsions.

Author(s) : JI J., ZHANG C., CAI S., ZHANG X., TONG H.

Type of article: IJR article, Review

Summary

As the global environment continues to deteriorate and temperatures gradually rise, it has been realized that the utilization of renewable energy is one of the most effective measures to mitigate global warming. Thermal energy storage plays a crucial role in the energy mix, and phase change materials are among the most significant and effective methods of thermal energy utilization. Phase change material emulsions, as fluid-phase phase change materials, play a significant role in thermal energy storage and heat transfer. However, issues related to stability and supercooling hinder the practical application of phase change material emulsions. Consequently, this paper explores the current research status of stability and supercooling mechanisms and technologies. Firstly, this paper provides a brief overview of the fundamental concepts of phase change material emulsions. Then, it addresses the challenges related to controlling the stability of phase change material emulsions and the issue of significant supercooling. The paper elaborates on relevant research findings in detail, mechanisms, evaluation criteria, and potential solutions. Finally, the paper outlines the research progress of phase change material emulsions in the fields of solar energy, construction, and thermal management, demonstrating their potential to advance renewable energy and various industrial sectors.

Available documents

Format PDF

Pages: 159-177

Available

  • Public price

    20 €

  • Member price*

    Free

* Best rate depending on membership category (see the detailed benefits of individual and corporate memberships).

Details

  • Original title: Research progress of stability and supercooling in phase change material emulsions.
  • Record ID : 30032808
  • Languages: English
  • Source: International Journal of Refrigeration - Revue Internationale du Froid - vol. 168
  • Publication date: 2024/12
  • DOI: http://dx.doi.org/10.1016/j.ijrefrig.2024.08.015

Links


See other articles in this issue (63)
See the source