IIR document

Modeling and characterization of the magnetocaloric effect in Ni2MnGa materials.

Author(s) : NICHOLSON D. M., ODBADRAKH K., SHASSERE B. A., et al.

Type of article: Article, IJR article

Summary

Magnetic shape memory alloys have great promise as magneto-caloric effect refrigerant materials due to their combined magnetic and structural transitions. Computational and experimental research is reported on the Ni2MnGa material system. The magnetic states of this system are explored using the Wang-Landau statistical approach in conjunction with the Locally Self-consistent Multiple-Scattering method. The effects of alloying agents on the transition temperatures of the Ni2MnGa alloy are investigated using differential scanning calorimetry and superconducting quantum interference device. Experiments are performed at the Spallation Neutron Source at Oak Ridge National Laboratory to observe the structural and magnetic phase transformations.

Available documents

Format PDF

Pages: 289-296

Available

  • Public price

    20 €

  • Member price*

    Free

* Best rate depending on membership category (see the detailed benefits of individual and corporate memberships).

Details

  • Original title: Modeling and characterization of the magnetocaloric effect in Ni2MnGa materials.
  • Record ID : 30009908
  • Languages: English
  • Source: International Journal of Refrigeration - Revue Internationale du Froid - vol. 37 - n. 1
  • Publication date: 2014/01

Links


See other articles in this issue (37)
See the source