IIR document

Modeling of a regenerative indirect evaporative cooler for a desiccant cooling system.

Number: pap. n. TP-088

Author(s) : BELLEMO L., ELMEGAARD B., REINHOLDT L. O., et al.

Summary

This paper presents a numerical study of a regenerative indirect evaporative cooler, the so-called Dew Point Cooler (DPC), which is part of a Desiccant Cooling system that may both dehumidify and cool humid air. The DPC model is based on first principles using a 1D finite volume scheme and determines the steady state working conditions for the component. A sensitivity analysis of the DPC performance is carried out based on the air inlet conditions, air flow rate and recirculation fraction. A recirculation fraction around 0.3 maximizes the DPC net cooling capacity. The supply temperature is found to be mostly affected by the inlet humidity ratio. Manufacturer data are used to tune the model. The tuned DPC model is characterized by an area effectiveness coefficient which is kept constant at 0.55. The cooling capacity and water consumption estimated by the tuned model deviate within 3% and 8%, respectively from manufacturer data. The computed pressure drops deviates within 6% from manufacturer data.

Available documents

Format PDF

Pages: 9 p.

Available

  • Public price

    20 €

  • Member price*

    Free

* Best rate depending on membership category (see the detailed benefits of individual and corporate memberships).

Details

  • Original title: Modeling of a regenerative indirect evaporative cooler for a desiccant cooling system.
  • Record ID : 30008315
  • Languages: English
  • Source: 4th IIR Conference on Thermophysical Properties and Transfer Processes of Refrigerants
  • Publication date: 2013/06/17

Links


See other articles from the proceedings (69)
See the conference proceedings