Parametric Investigation on the Performance of a Battery Thermal Management System with Immersion Cooling.

Author(s) : ZHOU Y., WANG Z., XIE Z., WANG Y.

Type of article: Periodical article

Summary

Lithium-ion batteries will generate a large amount of heat during high-rate charging and discharging. By transferring the heat to the environment in time, the batteries can be kept in a suitable temperature range. This allows them to work normally, prolongs their cycle life, and reduces the risk of thermal runaway. Immersion cooling is a simple and efficient thermal management method. In this paper, a battery thermal management system (BTMS) with immersion cooling was designed by immersing the lithium-ion cells in the non-conductive coolant—dimethyl silicone oil. The electric–thermal coupled model was adopted to obtain the heat production and temperature distribution of the cell during discharging, and the performance of the system was obtained by numerical calculation. It was found that, compared with natural cooling, immersion cooling could significantly reduce both the maximum temperature (MAT) of the cell and the temperature of the tabs during the 3C discharging process. However, the maximum temperature difference (MATD) of the cell was significantly increased. To solve this problem, the effects of the flow rate, viscosity, specific heat capacity, and thermal conductivity of the coolant on the performance of immersion cooling were further investigated and discussed, including the MAT and MATD of the cell, and the pressure drop of the coolant. The method and results could provide references for the design and application of the BTMS with immersion cooling in the future.

Available documents

Format PDF

Pages: 21 p.

Available

Free

Details

  • Original title: Parametric Investigation on the Performance of a Battery Thermal Management System with Immersion Cooling.
  • Record ID : 30029567
  • Languages: English
  • Subject: Technology
  • Source: Energies - vol. 15 - n. 7
  • Publishers: MDPI
  • Publication date: 2022/04
  • DOI: http://dx.doi.org/10.3390/en15072554

Links


See other articles in this issue (19)
See the source