Review of low-cost organic and inorganic phase change materials with phase change temperature between 0°C and 65°C.

Summary

Phase change materials (PCMs) that undergo a phase transition may be used to provide a nearly isothermal latent heat storage at the phase change temperature. This work reports the energy storage material cost ($/kWh) of various PCMs with phase change between 0 – 65°C. Four PCM classes are analyzed for their potential use in building systems: 1) inorganic salt hydrates, 2) organic fatty acids, 3) organic fatty alcohols, and 4) organic paraffin waxes. Many salt hydrates have low material costs (0.09 – 2.53 $/kg), high latent heat of fusion (100 – 290 J/g), and high densities (1.3 – 2.6 g/cm3), leading to favorable volumetric storage density and low energy storage costs, 50 – 130 kWh/m3 and 0.90 – 40 $/kWh, respectively. Some salts are notably more expensive due to their scarcity or pressures from competing industries such as lithium-based salts. Fatty acids have the lowest energy storage cost in the temperature range 8 – 17°C at 6.50 – 40 $/kWh. Despite favorable latent heat (125 – 250 J/g) their low density gives (0.9 g/cm3) gives poor volumetric storage capacity, 32 – 80 kWh/m3. Fatty alcohols generally have high material costs 2.50 – 200 $/kg which leads to high energy storage costs, 40 – 3000 $/kWh. With latent heat and density similar to fatty acids, fatty alcohols have poor volumetric energy storage, 43 – 55 kWh/m3. Paraffin waxes containing only a single length carbon chain have a higher energy cost (15 – 500 $/kWh) than generic paraffin waxes containing many lengths of carbon chains (7 – 30 $/kWh). Pure waxes have a discrete phase change temperature due to their homogeneity. In contrast, a less refined generic wax with several carbon chain lengths is more likely to have a pronounced temperature glide during its phase change. Pure single carbon chain waxes are generally required for applications <45°C as generic paraffin waxes melt between 45 – 70°C. For many waxes, a solid-solid transition occurs at temperatures below the solid-liquid phase change. For pure paraffins with carbon content ≥22 C atoms, these transitions may appear near the same temperature resembling a temperature glide. The challenges with fatty acids, fatty alcohols, and waxes are low thermal conductivity, low density, some flammability concerns, and compatibility issues with some common engineering materials such as polymers. Challenges with salt hydrates are pronounced supercooling (>5°C), incongruent melting, and corrosiveness. All PCMs may degrade if exposed to ambient conditions and therefore require proper sealing.

Available documents

Format PDF

Pages: 10

Available

  • Public price

    20 €

  • Member price*

    15 €

* Best rate depending on membership category (see the detailed benefits of individual and corporate memberships).

Details

  • Original title: Review of low-cost organic and inorganic phase change materials with phase change temperature between 0°C and 65°C.
  • Record ID : 30028683
  • Languages: English
  • Subject: Technology
  • Source: 2021 Purdue Conferences. 6th International High Performance Buildings Conference at Purdue.
  • Publication date: 2021/05/24
  • Document available for consultation in the library of the IIR headquarters only.

Links


See other articles from the proceedings (52)
See the conference proceedings