Summary
A cooling tower is an important guarantee for the proper operation of a solar system. To ensure proper operation of the system and to maintain high-efficiency points, the cooling tower must operate year-round. However, freezing is a common problem that degrades the performance of cooling towers in winter. For example, the air inlet forms hanging ice, which clogs the air path, and the coil in closed cooling towers freezes and cracks, leading to water leakage in the internal circulation. This has become an intractable problem that affects the safety and performance of cooling systems in winter. To address this problem, three methods of freeze protection for cooling towers are studied: (a) the dry and wet mixing operation method—the method of selecting heat exchangers under dry operation at different environments and inlet water temperatures is presented. The numerical experiment shows that the dry and wet mixing operation method can effectively avoid ice hanging on the air inlet. (b) The engineering plastic capillary mats method—its freeze protection characteristics, thermal performance, and economics are studied, and the experiment result is that polyethylene (PE) can meet the demands of freeze protection. (c) The antifreeze fluid method—the cooling capacity of the closed cooling towers with different concentrations of glycol antifreeze fluid is numerically studied by analyzing the heat transfer coefficient ratio, the air volume ratio, the heat dissipation ratio, and the flow rate ratio. The addition of glycol will reduce the cooling capacity of the closed cooling tower.
Available documents
Format PDF
Pages: 11 p.
Available
Free
Details
- Original title: Study of the technologies for freeze protection of cooling towers in the solar system.
- Record ID : 30031226
- Languages: English
- Subject: Technology
- Source: Energies - vol. 15 - n. 24
- Publishers: MDPI
- Publication date: 2022/12
- DOI: http://dx.doi.org/https://doi.org/10.3390/en15249640
Links
See other articles in this issue (16)
See the source
Indexing
-
Wplyw czynników eksploatacyjnych na prace skrap...
- Author(s) : KALINOWSKI K.
- Date : 2010
- Languages : Polish
- Source: Technika Chlodnicza i Klimatyzacyjna - vol. 17 - n. 10
- Formats : PDF
View record
-
Experimental investigation of solar driven desi...
- Author(s) : KUMAR A., YADAV A.
- Date : 2016/09
- Languages : English
- Source: International Journal of Refrigeration - Revue Internationale du Froid - vol. 69
- Formats : PDF
View record
-
Thermal and chemical analysis of fouling phenom...
- Author(s) : WU X., CREMASCHI L.
- Date : 2012/07/16
- Languages : English
- Source: 2012 Purdue Conferences. 14th International Refrigeration and Air-Conditioning Conference at Purdue.
- Formats : PDF
View record
-
A study on the frost self-protection of cooling...
- Author(s) : SÂRBU I., BORZA I.
- Date : 1999
- Languages : English
- Source: Period. polytech., Mech. Eng. - vol. 43 - n. 1
View record
-
Experimental investigation of counter flow heat...
- Author(s) : AL-ZUBAYDI A. Y. T, HONG G.
- Date : 2018/09
- Languages : English
- Source: International Journal of Refrigeration - Revue Internationale du Froid - vol. 93
- Formats : PDF
View record