IIR document

Thermodynamic model for reciprocating compressors with the focus on fluid dependent efficiencies.

Author(s) : ROSKOSCH D., VENZIK V., ATAKAN B.

Type of article: Article, IJR article

Summary

Fluids with high global warming potential, which are used in existing refrigeration cycles and heat pumps, will have to be replaced soon by less harmful fluids, but the fluid selection is difficult especially due to the unknown compressor performance. In this work a differential compressor model for reciprocating compressors is introduced which predicts volumetric and isentropic efficiencies quickly and can be easily fitted with measured data at only one operation point of an existing compressor. In order to characterise the influence of different fluids two semi-physical correlations for the valve flows are fitted here, and a procedure of transferring them to different compressors is shown. The model is validated on, in total, 63 measured points based on numerous fluids from one semi-hermetic reciprocating compressor which is part of a heat pump cycle. The calculations lead to mean prediction errors of 3.0% for the isentropic and 2.3% for the volumetric efficiency.

Available documents

Format PDF

Pages: 104-116

Available

  • Public price

    20 €

  • Member price*

    Free

* Best rate depending on membership category (see the detailed benefits of individual and corporate memberships).

Details

  • Original title: Thermodynamic model for reciprocating compressors with the focus on fluid dependent efficiencies.
  • Record ID : 30022526
  • Languages: English
  • Source: International Journal of Refrigeration - Revue Internationale du Froid - vol. 84
  • Publication date: 2017/12
  • DOI: http://dx.doi.org/10.1016/j.ijrefrig.2017.08.011

Links


See other articles in this issue (26)
See the source