Recommended by the IIR
A whole building life-cycle assessment approach to support decision-making for sustainable buildings.
Number: 3563
Author(s) : ZHANG H., CAI J., BRAUN J. E.
Summary
Buildings account for 39% of the CO2 emissions in the U.S. Although emerging building energy-efficient technologies lead to improved energy efficiency and lower environmental impact in the operational phase, not much attention has been paid to the environmental impact associated with the materials and manufacturing of the building mechanical systems. This paper presents an integrated life-cycle assessment method for buildings that accounts for the embodied and use phase carbon impacts of the building and its mechanical systems. The proposed methodology relies on EnergyPlus to generate the use-phase energy consumption for any given building. A material 'grabber' routine was developed to automatically extract building envelope material information from EnergyPlus models, which is then used for envelope embodied carbon analysis. For the mechanical equipment, embodied carbon accounting was performed for two representative air-conditioning and heat pump units: a 4-ton packaged unit and a 4-ton split heat pump. The different elements were incorporated in the overall life-cycle assessment tool along with lighting embodied data to allow generation of a whole building environmental performance report. Five Department of Energy commercial building prototypes were used as case studies and analysis results for seven U.S. climate locations are presented in this paper. The results show that for the investigated prototypical buildings, the use phase energy consumption has a dominant impact on the overall building environmental performance: the embodied carbon contribution is less than 9% for all considered cases. However, the tradeoffs could change dramatically as the U.S. moves towards net-zero buildings and the tool presented in this paper could be used to consider these tradeoffs.
Available documents
Format PDF
Pages: 10
Available
Public price
20 €
Member price*
15 €
* Best rate depending on membership category (see the detailed benefits of individual and corporate memberships).
Details
- Original title: A whole building life-cycle assessment approach to support decision-making for sustainable buildings.
- Record ID : 30028659
- Languages: English
- Subject: Technology, Environment
- Source: 2021 Purdue Conferences. 6th International High Performance Buildings Conference at Purdue.
- Publication date: 2021/05/24
- Document available for consultation in the library of the IIR headquarters only.
Links
See other articles from the proceedings (52)
See the conference proceedings
-
Comprehensive investigations on Life Cycle Clim...
- Author(s) : WAN H., CAO T., HWANG Y., RADERMACHER R., CHIN S.
- Date : 2021/09
- Languages : English
- Source: International Journal of Refrigeration - Revue Internationale du Froid - vol. 129
- Formats : PDF
View record
-
Multi-criteria evaluation of river source heat ...
- Author(s) : JUNG Y., LEE H.
- Date : 2021/05/24
- Languages : English
- Source: 2021 Purdue Conferences. 6th International High Performance Buildings Conference at Purdue.
- Formats : PDF
View record
-
Next generation heat pump system evaluation met...
- Author(s) : WAN H.
- Date : 2021
- Languages : English
- Formats : PDF
View record
-
An innovative tool to evaluate and optimize GHG...
- Author(s) : LEDUCQ D., EVANS J., VERBOVEN P., ALVAREZ G.
- Date : 2023/08/21
- Languages : English
- Formats : PDF
View record
-
Circular economy for cooling: A review to devel...
- Author(s) : PALAFOX-ALCANTAR P. G., KHOSLA R., MCELROY C., MIRANDA N.
- Date : 2022/12/15
- Languages : English
- Source: Journal of Cleaner Production - Vol. 379, Part 1
- Formats : PDF
View record