Recommended by the IIR / IIR document

Achieving high-performance absorption thermal energy storage via working fluid screening and cycle improvement.

Number: 0233

Author(s) : GAO J., XU Z.

Summary

High-performance energy storage is crucial to alleviate the mismatch between thermal energy generation and consumption, thus providing a feasible solution to realize the large-scale utilization of renewable energy. Owing to high energy storage density, insignificant heat loss, and relatively mature technology, absorption thermal energy storage (ATES) system has shown promising potential in thermal energy storage, especially in long-term storage. Thermal energy could be stably stored and then converted to controllable heating or cooling output whenever and wherever possible. In this work, performance evaluation of various working pairs in different ATES cycles has been carried out. Results show that the H2O/ionic liquids (ILs) present comparable performance with H2O/LiBr in single-stage ATES cycle. In the thermally pressurized ATES cycle, the energy storage performance of H2O/ILs is significantly improved. H2O/[Emim][Ac] exhibits an energy storage density of 134.5 kWh/m3, which is 26.4% higher than that of H2O/LiBr. This work presents a comprehensive investigation of working pairs and cycle configurations of ATES systems, which can serve as guidelines for high-performance absorption thermal energy storage.

Available documents

Format PDF

Pages: 11

Available

  • Public price

    20 €

  • Member price*

    Free

* Best rate depending on membership category (see the detailed benefits of individual and corporate memberships).

Details

  • Original title: Achieving high-performance absorption thermal energy storage via working fluid screening and cycle improvement.
  • Record ID : 30031388
  • Languages: English
  • Subject: Technology
  • Source: Proceedings of the 26th IIR International Congress of Refrigeration: Paris , France, August 21-25, 2023.
  • Publication date: 2023/08/21
  • DOI: http://dx.doi.org/10.18462/iir.icr.2023.0233

Links


See other articles from the proceedings (491)
See the conference proceedings