Adaptive grey-box models for model predictive building control using the unscented kalman filter.

Number: 3548

Author(s) : FREUND S., SCHMITZ G., TIEMANN C. M.

Summary

Model predictive control (MPC) for buildings is a promising approach to reduce the energy consumption of buildings while at the same time the thermal user comfort can be improved. The core of this control strategy consists of building models that can describe the thermal behavior of particular zones accurately. Grey-box models are frequently used modeling approaches for control-oriented models, however, these models often have limitations regarding their general applicability. Furthermore, the modeling and identification of models used in MPC still require significant effort and is one of the main obstacles for the actual practical implementation of building predictive control. This paper addresses these issues and presents a framework for the online state and parameter estimation of grey-box models. The results
show that (1) this online simultaneous state and parameter estimation highly increases the multi-steps-ahead (up to 48 h) prediction performance, (2) this approach enables the models to adapt to changing environmental conditions and (3) it is possible to use only one pre-defined initial model to describe the thermal behavior of several different zones.

Available documents

Format PDF

Pages: 10

Available

  • Public price

    20 €

  • Member price*

    15 €

* Best rate depending on membership category (see the detailed benefits of individual and corporate memberships).

Details

  • Original title: Adaptive grey-box models for model predictive building control using the unscented kalman filter.
  • Record ID : 30028658
  • Languages: English
  • Subject: Technology
  • Source: 2021 Purdue Conferences. 6th International High Performance Buildings Conference at Purdue.
  • Publication date: 2021/05/24
  • Document available for consultation in the library of the IIR headquarters only.

Links


See other articles from the proceedings (52)
See the conference proceedings