IIR document
An analytical design tool for pin fin sorber bed heat/mass exchanger.
Author(s) : DARVISH M., BAHREHMAND H., BAHRAMI M.
Type of article: IJR article
Summary
This paper proposes a novel closed-form analytical model to predict the sorption performance of a pin fin heat/mass exchanger (PF-HMX) prototype, using the Eigenfunction expansion method to solve the governing energy equation. The proposed transient 2-D solution includes all salient thermophysical and sorption properties, sorbent geometry, operating conditions, and the thermal contact resistance at the interface between the sorber bed heat exchanger and sorption composite. An analysis of variance (ANOVA) method is utilized to understand the percentage contribution of each parameter on specific cooling power (SCP) and coefficient of performance (COP). It is shown that the amount of graphite flake, sorbent thickness, and fin radius on one hand and cycle time and graphite flake content on the other have the highest level of contribution to the COP and SCP, respectively. Moreover, a parametric study found that HMX geometry, sorbent properties, and cycle time counteract effects on COP and SCP, which should be optimized simultaneously to build an optimal design. The analytical model was validated successfully using the sorption data from a custom-built gravimetric large temperature jump (G-LTJ) testbed. The experimental results show that the present PF-HMX design with a relatively low mass ratio (MR) can achieve an SCP of 1160 W kg−1 and a COP of 0.68 which are higher than the previously published results in the literature.
Available documents
Format PDF
Pages: 381-393
Available
Public price
20 €
Member price*
Free
* Best rate depending on membership category (see the detailed benefits of individual and corporate memberships).
Details
- Original title: An analytical design tool for pin fin sorber bed heat/mass exchanger.
- Record ID : 30029145
- Languages: English
- Subject: Technology
- Source: International Journal of Refrigeration - Revue Internationale du Froid - vol. 131
- Publication date: 2021/11
- DOI: http://dx.doi.org/10.1016/j.ijrefrig.2021.07.027
- Document available for consultation in the library of the IIR headquarters only.
Links
See other articles in this issue (95)
See the source
Indexing
-
Gradient porosity distribution of adsorbent bed...
- Author(s) : LI M., ZHAO Y., LONG R., LIU Z., LIU W.
- Date : 2021/08
- Languages : English
- Source: International Journal of Refrigeration - Revue Internationale du Froid - vol. 128
- Formats : PDF
View record
-
Performance study of adsorption refrigeration s...
- Author(s) : XU Q., WU J., XU Z.
- Date : 2021/11
- Languages : English
- Source: International Journal of Refrigeration - Revue Internationale du Froid - vol. 131
- Formats : PDF
View record
-
Assessment of numerical models in the evaluatio...
- Author(s) : MOHAMMED R. H., MESALHY O., ELSAYED M. L., et al.
- Date : 2019/03
- Languages : English
- Source: International Journal of Refrigeration - Revue Internationale du Froid - vol. 99
- Formats : PDF
View record
-
Investigation on a refrigeration system based o...
- Author(s) : GAO J., WANG L., GAO P., et al.
- Date : 2017/08/07
- Languages : English
- Source: International sorption heat pump conference, ISHPC 2017, Tokyo august 7-10.
View record
-
Energy and exergy based assessment of a two bed...
- Author(s) : BAIJU V., SHA A. A., SHAJAHAN A., CHINDHU V. G.
- Date : 2022/09
- Languages : English
- Source: International Journal of Refrigeration - Revue Internationale du Froid - vol. 141
- Formats : PDF
View record