IIR document

CFD modelling of the flow of ice slurry in a vertical slit channel.

Author(s) : NIEZGODA-ZELASKO B., KUCHMACZ J.

Type of article: IJR article

Summary

In this article, the Euler-Euler method was applied to CFD modelling of adiabatic ice slurry flow, for different flow directions in a vertical slit channel. The mean relative accuracy of determining pressure drops compared to experimental studies was 5.6%. Calculations showed that the relative slip velocity and the effect of flow direction on slip velocity increase with decreasing carrier fluid concentration, decreasing mean flow velocity, and decreasing mean solid particles volume fraction. The mean particle slip velocity does not exceed 4%, and local slip velocity values can be 58% of the mean suspended solids flow velocity. For heterogeneous flow, the highest slip velocities occur at a distance of 15% of the channel width from the channel sidewalls. The shape of the solid particles distribution profile is determined by the mean flow velocity and the mean solid particles volume fraction. Excluding the area at a distance of 8% of the channel width from the sidewall where local maximum (for low velocities) and minimum (for higher velocities) values may occur, the profile is stabilised in the central part of the channel. In this study, the boundary curves between heterogeneous and homogeneous flow were determined for ice slurry flow in a vertical slit channel.

Available documents

Format PDF

Pages: 158-167

Available

  • Public price

    20 €

  • Member price*

    Free

* Best rate depending on membership category (see the detailed benefits of individual and corporate memberships).

Details

  • Original title: CFD modelling of the flow of ice slurry in a vertical slit channel.
  • Record ID : 30029844
  • Languages: English
  • Subject: Technology
  • Source: International Journal of Refrigeration - Revue Internationale du Froid - vol. 139
  • Publication date: 2022/07
  • DOI: http://dx.doi.org/10.1016/j.ijrefrig.2022.04.006

Links


See other articles in this issue (19)
See the source